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Electric polarization and its quantization in one-dimensional non-Hermitian chains
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We generalize the modern theory of electric polarization to the case of one-dimensional (1D) non-Hermitian
systems with a line-gapped spectrum. In these systems, the electronic position operator is non-Hermitian even
when projected into the subspace of states below the energy gap. However, in the framework of biorthogonal
quantum mechanics, the associated Wilson-loop operator is unitary in the thermodynamic limit, thereby leading
to real-valued electronic positions that allow for a clear definition of polarization. Non-Hermitian polarization
can be quantized in the presence of certain symmetries, as for Hermitian insulators. Differently from the latter
case, however, in this regime polarization quantization depends also on the type of energy gap, which can be
either real or imaginary, leading to a richer variety of topological phases. The most counterintuitive example is
the 1D non-Hermitian chain with time-reversal symmetry only, where non-Hermitian polarization is quantized in
the presence of an imaginary-line gap. We propose two specific models to provide numerical evidence supporting

our findings.
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Although the concept of electric polarization was intro-
duced 100 years ago [1], it was not until the early of 1990s
that the long-standing problem of crystalline polarization was
solved [2—6]. The main reason is that in a crystalline mate-
rial the macroscopic polarization cannot be unambiguously
defined as the dipole of a unit cell, since the electronic wave
functions are delocalized over the whole lattice. The first step
towards a theory of polarization was made by Resta [2], who
cast the polarization difference as an integrated macroscopic
current. Since then, King-Smith and Vanderbilt [3] imme-
diately built what is now known as the modern theory of
polarization of crystalline insulators, which shows that the
bulk polarization is strictly related to electronic geometric
phases [7-9]. When the lattice Hamiltonian obeys inversion
and/or chiral symmetry (IS and/or CS), the polarization is
quantized. Nonvanishing values of the bulk polarization are
associated with the appearance of boundary charges [10],
according to the so-called bulk-boundary correspondence
(BBC) [11-13], a hallmark of topological physics.

When electrons in a crystalline insulator interact with the
environment, their effective dynamics is described through a
non-Hermitian (NH) Hamiltonian [14]. Enormous attention is
currently devoted to NH physics, which is rich in unconven-
tional phenomena such as unidirectional invisibility [15-17],
exceptional-point encirclement [18-20], enhanced sensitivity
[21-23], and the NH skin effect [24-27]. These phenomena
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have been reproduced in a variety of artificial simulators
[28-31].

Within this extremely active research field, little is known
about NH electric polarization. Very recently, three papers
discussed NH polarization by means of many-body wave
functions [32], entanglement spectrum [33], and generalizing
Resta’s formula using a biorthogonal basis [34]. Similar to
the Hermitian case, these approaches considered only systems
having chiral and/or inversion symmetries. However, non-
Hermiticity is known to alter dramatically the definition of
internal symmetries due to the distinction of complex conju-
gation and transposition [35,36], and to present different types
of energy gaps [36]. As such, it is crucial to understand if NH
polarization is quantized in a larger variety of configurations,
compared to the Hermitian case, and how these conditions are
related to the type of energy gap.

In this Letter we provide a generalization of the standard
theory of electric polarization [3] to line-gapped NH systems,
where the bulk wave functions are extended across the entire
system, such as those of Hermitian crystalline materials, and
the identification of a ground state is not ambiguous [33]. We
follow a traditional approach, relying on the projection of the
electronic position operator into a subspace of single-particle
wave functions that fill the bands below the gap [10]. Al-
though the projected position operator is itself non-Hermitian,
we find that it leads to a unitary Wilson-loop operator. There-
fore, the Wannier centers [37], i.e., the phases of Wilson-loop
eigenvalues, are purely real valued, and so is the electric
polarization, which is the summation of Wannier centers [10].
Wilson-loop operators and related eigenvalues have already
proved key to the definition of topological invariants of NH
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systems [38,39] and edge polarization in two-dimensional
(2D) lattices [40]. Compared to other approaches [32—-34], our
derivation allows us to analyze systematically the restrictions
of the basic symmetries to the Wilson-loop operator in sys-
tems with either real- or imaginary-line gaps, obtaining in turn
the quantization conditions of NH polarization. With respect
to the Hermitian case, we find that NH systems host a larger
number of topological phases, which are protected by both
symmetries and type of energy gap. The electric polarization
studied here is conceptually different from the biorthogonal
polarization introduced in Ref. [41], which represents a topo-
logical invariant defined in terms of zero-energy modes under
open boundary conditions.

Let us start by considering a one-dimensional (1D) NH
crystalline chain composed of N unit cells, each made of Ny,
lattice sites or orbitals. In this system, the electric polarization
can be computed in a single unit cell as the dipole mo-
ment density, that is, p = —% 2[3:“’1 ery, where Neee < Now
is the number of electrons in each unit cell, a is the lattice
spacing, e is the absolute value of the electron charge, and
ry’s are the electron positions with respect to the center of
positive charges in the cell. More details can be found in
the Supplemental Material (SM) [42] (see also Refs. [43—49]
therein). For simplicity, we set a = e = 1. The modern theory
of electric polarization provides an elegant method to deter-
mine positions r, in quantum systems where bulk electrons
are delocalized, starting from the position operator projected
into the subspace of occupied bands [10]. A straightforward

A

definition of the position operator is £ = Z = LN R

where £, = (j +xa)c;’a|0)(0|cj,c,, with cj’a (¢j,«) the cre-
ation (annihilation) operators for electrons within cell j and
orbital «, x, the position of the orbital & within the unit cell,
and |0) the vacuum state for the electrons. Unfortunately,
X is not a legitimate operator for finite values of N when
periodic boundary conditions (PBCs) are used. To overcome
this, a unitary position operator was proposed [5,50], i.e
X, = exp(i2wX/N). This operator is defined modulo N, thus
obeying PBC. Let us note that such an operator was originally
discussed when considering its expectation value [5]. How-
ever, in Ref. [51] the authors showed that this definition has
to be corrected, in case one is willing to compute the distance
of two coordinates, not its average value. Importantly, in the
case of independent and noninteracting electrons, such as our
situation, both approaches give the same outcome, hence we
can safely use the unitary operator X, defined above.

By discrete Fourier transformation, X, can be alternatively
written in momentum space as [42]

chwa )01k (1

where k € Ak-(0,1,....N—1), Ak=27/N, and &,

(Cr.«) are creation (annihilation) operators for electrons with
momentum k in the orbital «.

On the basis of position operator Eq. (1), the projected
position operator can be achieved by projecting it into the
subspace of electronic states that are occupied [10]. In the
Hermitian case, these are typically obtained by looking at
the band structure and considering all states whose energy
is below the Fermi energy. However, this procedure is more
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FIG. 1. Schematic for energy gaps of NH Hamiltonians. (a) In
a point gap, there is a reference value E, that is not touched by
the energy bands. (b), (c) In a real/imaginary-line gap, energies are
grouped in at least two bands, whose real /imaginary part is separated
by a finite gap [35]. It is also possible that there is a separation of both
the real and imaginary parts of the spectrum of gapped bands.
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subtle in NH systems, where eigenenergies are normally com-
plex and can be arranged in bands exhibiting three types of
energy gap (see Fig. 1), that is, a point gap, a real-line gap, and
an imaginary-line gap. The first is associated with NH skin
effect [24-27], where the wave functions of single-particle
eigenstates are all localized at the boundary the system and
the definition of occupied states is ambiguous [33]. A theory
of the electric polarization for this system has been success-
fully proposed by relying on a many-body approach, showing
essentially that owing to the Pauli exclusion principle the
many-body eigenstates are delocalized in the bulk of the
system [32]. An alternative formulation has been recently
proposed in Ref. [33] in terms of single-particle states, yet the
obtained polarization is complex valued when the spectrum is
point gapped. Here, we preferred not the deal with these am-
biguities and focus on line-gapped systems only, which can be
continuously deformed into (anti-)Hermitian ones while keep-
ing the line gap and symmetry [35]. As such, occupied bands
can be well defined, at least in the theoretical models. Indeed,
in our discussion, we will consider as occupied those eigen-
states whose energies, actually their real/imaginary parts, are
below the real/imaginary-line gap, respectively (see Fig. 1).
At this level the type of line gap is not playing any role (the
gap could be also both real and imaginary), while it will
be clearer below that conditions for quantizing the electric
polarization are different in the two cases. With this in mind,
the projected position operator can be written as [42]

NOCC
P"CC POCC = Z Z Vim, k+Ak|O> [Gk]mn <0|yn k> @
nm=1 k

where Gy is the core matrix defined in the Supplemental Mate-
rial [42], ¥ . k( Jj = R/L) is the right/left creation/annihilation
operator of electrons with quasimomentum & in the nth band,
and N, is the number of bands whose energies are below
the line gap. Equation (2) is conceptually similar to Eq. (8)
in Ref. [32], where the average of the position operator is
computed for the many-body ground state. Although starting
from a similar expression, here we take a different path to
computing the polarization, that is, the approach harnessed in
Hermitian systems [10]. As we show below, this gives us the
chance to obtain directly quantization conditions based on the
analysis of the Wilson-loop operator.

In the circumstance of Hermitian insulators, the projected
position operator is Hermitian [10]. In the NH case, however,
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the operator in Eq. (2) is NH since it is constructed in terms
of right and left eigenvectors of the NH Hamiltonian. At first
sight, one would expect that this cannot generate real-valued
Wannier centers. Nevertheless, by looking at the Wilson-loop
operator, which is unitary in the thermodynamic limit as long
as the right and left eigenvectors are complete, one can realize
that this is not the case. Actually, for finite values of Ak,
the core matrix Gy is not unitary, in analogy with the Her-
mitian case [10]. As discussed in the Supplemental Material
[42], one can generalize the Hermitian procedure in Ref. [10]
to the non-Hermitian case by introducing a singular value
decomposition (SVD) [52] of the matrix Gy, Gy = U;D;V,,
with U and V; both unitary, and D; a diagonal matrix. In-
deed, the matrix F, = UkaT, which is unitary, can be used to
construct unitary Wilson-loop operators that, in the thermody-
namic limit, converge to those obtained in terms of Gy. This
procedure is explicitly used to obtain accurate Wilson-loop
eigenvalues.

By using the operator F; a unitary Wilson loop
[38—40,53,54] can be constructed by multiplying the latter
along the Brillouin zone (BZ). As shown in Ref. [42], this
converges to the one obtained in terms of Gy, in the thermody-
namic limit. As the Wilson-loop operator is unitary, the phases
of its eigenvalues are real numbers that still define the Wannier
centers, i.e., the electronic displacement with respect to the
center of positive charges. Based on this implicit relation, the
NH electric polarization can be extracted as

p=Y €, 3)

where €/ is the phase of the Wilson-loop eigenvalue, satis-
fying Wigor i l€]) = €27 |€]), and |¢]) is the Wilson-loop
eigenstate. In fact, the polarization defined in Eq. (3) can be
expressed as the integral of complex Berry connection [55] Ay
over the BZ [42],

1
P=—5- Tr[Ar]dk mod 1, (€]

T JBZ
which agrees with the well-known expression of the polar-
ization [3-5], that is, the electric polarization is a natural
topological invariant.

Quantization conditions. Symmetries play a pivotal role
in quantizing electric polarization; IS, for instance, forces
the polarization to be either 0 or 1/2 in Hermitian crys-
talline insulators [10]. In NH physics, the definition of internal
symmetries are dramatically altered due to the distinction
of complex conjugation and transposition [27,35]. Includ-
ing pseudo-Hermiticity and inversion symmetry, there are
eight basic symmetries [42], i.e., IS, CS, sublattice symme-
try (SLS), time-reversal symmetry (TRS), anomalous TRS
(TRS"), pseudo-Hermiticity (1-H), particle-hole symmetry
(PHS), and anomalous PHS (PHS"), with related operators
I,0,S,T,T, n, C, C, respectively. It is necessary to study
what symmetries quantize NH polarization.

As mentioned above, Eq. (3) provides a convenient way
to determine the quantization conditions of NH polarization
by analyzing the restriction of symmetries to the unitary
Wilson-loop operator. Going beyond previous studies, here we
investigate the constraint of these basic symmetries to NH po-

TABLE I. The quantization table of NH electric polarization for
eight basic symmetries. r and i denote real-line and imaginary-line
gaps, respectively, and ./ indicates the quantization of bulk polar-
ization by the corresponding symmetry. Note that for each of the
last three types of symmetries, the quantization of polarization is
only applicable when the symmetry operator g satisfies gg* = 1 (g =
T, C, C). The topological classes corresponding to these symmetries
are provided in Ref. [35].

IS CS SLS TRS" 5-H TRS PHS PHS'
VARV AN/ v Y
iy v v Y

larization, both in real and imaginary gapped systems, which
are associated with different symmetry-protected topological
phases [35]. The results we obtain are summarized in Table I,
which clearly shows that, compared to the Hermitian case,
NH polarization is quantized in a larger number of symmetry
classes. The corresponding topological classes can be found
in Ref. [35]. In general, the quantization conditions can be
categorized into three classes: the first includes TRS' and 5-H,
imposing no restriction to the NH polarization; the second
class includes IS, SLS, and PHS, each presenting quantized
bulk polarization for both real- and imaginary-line gaps; the
last class includes CS, TRS, PHS', which quantizes NH po-
larization only for real- or imaginary-line gaps. Note that, for
each of the last three symmetries in Table I, i.e., TRS, PHS,
PHS', the quantization condition is only applicable when the
symmetry operator g satisfies gg* = 1(g = T, C, C), while the
unitary sewing matrix is zero for gg* = —1(g =T, C, C) [42].

Among the cases summarized in Table I, systems with TRS
and an imaginary-line gap represent a significant example,
which is fully distinct with respect to the Hermitian case. In
Hermitian insulators indeed, TRS imposes no restrictions to
electric polarization because the energies satisfy the relation
E. (k) = EL(—k), and bands are individually subject to TRS,
thus, the topological phase is absent [36]. In NH physics,
however, under the constraint of TRS, the energy spectrum
satisfies the relation E (k) = E*(—k). If the energy spectrum
is characterized by an imaginary-line gap, then the positive
and negative imaginary bands are always paired; considering
the fact that the Hilbert space of all bands is topologically
trivial [10], then the topological phase featured with the Z,
invariant appears [35]. Note that the quantization mechanism
of TRS associated with an imaginary-line gap is the same
as that of PHS" associated with a real-line gap, due to the
unification of TRS and PHS' [36].

Specific examples. Here, we present two simple models
(with two sites per unit cell) to provide numerical evidence
for some of the results obtained above. First, let us con-
sider a bipartite lattice where electrons are subject to a NH
Su-Schrieffer-Heeger (SSH) Hamiltonian, that exhibits NH
polarization due to the presence of SLS. The Hamiltonian
reads

A= Z[v(ajz?j —blay) +w@b; . +b_japl, )
J
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FIG. 2. The real part of the eigenvalues of the NH Hamiltonian
defined in Eq. (5), when w = 1.5, N = 40, and v € (-3, 3), obtained
for (a) periodic and (b) open boundary conditions, respectively. Their
imaginary parts are plotted in the SM [42]. The red line in (b) marks
the zero-energy edge modes. (c) The polarization phase diagram as
functions of w, v € (—3, 3). (d) Electron charge distribution in the
topologically nontrivial polarization phase for w = 1.0, v = 0.5 [i.e.,
the red dot denoted in (c)]. The total electron charge at the ends is
+e/2 relative to background.

where a; (&;) and 13‘,~ (E}) are annihilation (creation) operators
on sites A and B of the jth cell, respectively, and v, w € R de-
note hopping amplitudes. In this model, the non-Hermiticity
is induced through the opposite sign (v and —v) of a — b
and b — a tunnelings within a unit cell. A Hamiltonian such
as the one in Eq. (5) can be effectively realized in photonic
simulators, where asymmetric couplings are obtained by tai-
loring gains and losses of individual optical modes, encoding
the lattice sites of our model [56]. The Hamiltonian in Eq. (5)
obeys SLS and TRS, with the corresponding operators S =
®_0. and T = ®J_,00, where oy and o, are the identity
matrix and Pauli matrix, respectively. These symmetries force
the eigenenergies to come in (E, —E™) pairs, thus presenting
a real-line gap in the energy spectrum [see Figs. 2(a) and 2(b);
the complete spectrum is given in Sec. VIII of SM [42]]. By
means of the NH polarization formula reported in Eq. (3), the
topological phase diagram is computed as functions of w and
v [see Fig. 2(c)], which clearly presents trivial and nontrivial
phases that are separated by lines |w| = |v|. In addition, the
charge density distribution for the case w = 1.0, v =0.5,
N =40 [i.e., the red dot in Fig. 2(c)] is plot in Fig. 2(d),
indicating the validity of conventional BBC (see Sec. VIII
of SM [42]). Note that the quantized NH polarization is
protected by SLS, though this model also obeys TRS. The
latter is responsible for polarization quantization only when
an imaginary-line gap is present (see Table I). Let us stress
that in finite lattices, we compute the polarization in terms
of real-valued Wannier centers. To do so, singular value de-
composition [57] is used to construct numerical Wilson-loop
operators [42].

(c) -2 0 2

(b) -2 0 2

Im(E

(d)

0.5

‘0-....,_.!0

v

FIG. 3. NH polarization and TRS symmetry. (a) Schematic of
a one-dimensional NH lattice which obeys only TRS. The dashed
boxes indicate the unit cells. (b), (c) Associated imaginary energy
spectra, when w = 0.5, r = 1.0, § = 0.5, N =40, and v € (-3, 3)
[see Eq. (6)], computed for (a) periodic and (b) open boundary
conditions, respectively. Their real parts are plotted in the SM [42].
The red line in (b) marks the zero-energy edge modes. The energy
spectrum presents an imaginary energy gap for |v| < +/4r? — w?.
(d) Numerical values of the polarization p as a function of v, for
the same parameters as in (b) and (c).

The second model is schematically shown in Fig. 3(a),
whose Hamiltonian in momentum space reads

H (k) = [v + 2ié sin(k)]o, + woy, + 2ir cos(k)o,, (6)

where (oy, 0y, 0;) are Pauli matrices. It is easy to verify that
the Hamiltonian in Eq. (6) obeys only TRS with T = o,,
and the energy spectrum presents an imaginary-line gap for
lv| < v/4r2 —w?, as shown in Figs. 3(b) and 3(c), while
for |v| > 4/4r* — w? there is a real-line gap [42]. Table I
reveals that only in the presence of an imaginary-line gap
does TRS quantize NH polarization, as shown in Fig. 3(d) for
|v] < +/4r? — w?. Contrarily, the NH polarization in the range
[v] > «/4r? — w? deviates from the quantized value p =0
due to the presence of a real-line gap in this range.
Conclusions. In summary, we proposed a complete theory
for the electric polarization in 1D NH systems presenting
line-gapped spectra, and obtained the associated quantization
conditions, which are found to be more than those of the
Hermitian case. This is essentially related to the possibility
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that the gap type of line-gapped NH systems may be real or
imaginary. We plan to extend these studies to superconducting
chains [58] and high-order topological multipole moments
[59-69], whose definition in NH systems looks feasible by
using the same approach presented here. Although the present
Letter focuses on the case of independent electrons, Resta’s
formula was devised for many-particle interacting systems
[5], so another potential followup of our work is to calculate
the electric polarization of NH systems, where many-body
effects are included.
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