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We report on a method for the characterization of intense, structured optical fields through the analysis 

of the size and surface structures formed inside the annular ablation crater created on the target surface. 

In particular, we apply the technique to laser ablation of crystalline silicon induced by femtosecond 

vector vortex beams. We show that a rapid direct estimate of the beam waist parameter is obtained 

through a measure of the crater radii. The variation of the internal and external radii of the annular 

crater as a function of the la se r  pul se  ener gy ,  at  f ixed number of pulses provides another way 

to evaluate the beam spot size through numerical fitting of the obtained experimental data points. A 

reliable estimate of the spot size is of paramount importance to investigate pulsed laser-induced effects 

on the target material. Our experimental findings offer a facile way to characterize focused, high 

intensity complex optical vector beams which are more and more applied in laser-matter interaction 

experiments.  
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Structured light beams with non-Gaussian, customized intensity profiles and spatially variant state of 

polarization (SoP) are gaining attention as a novel prospect in many fields of optical science and 

technology1–4. In this context, optical vortices exhibiting a spiral phase structure and an annular spatial 

intensity distribution around the beam axis and transporting orbital angular momentum (OAM) are being 

widely used in a number of applications, e.g., optical tweezers, phase contrast microscopy, stimulated 

emission depletion microscopy and lithography, micro-manipulation and micro-machines,  photo-

polymerization, etc..1–3 Similarly, vector-vortex beams, obtained when superimposing left and right 

circularly polarized beams (or any pair of orthogonal polarization states) carrying opposite values of 

OAM, and characterized by topologically non-trivial polarization pattern, are exploited in various 

applications. Recently, the progressive development of efficient beam converters generating powerful, 

pulsed optical vortex (OV) and vector-vortex (VV) beams is offering the possibility of experimenting 

with such complex light beams and observing new experimental aspects in other emerging applications, 

like direct laser processing and surface structuring. For example, chiral micro-needles on various metals, 

silicon and azo-polymer are created by OV beams with nanosecond pulse duration.5–7 Femtosecond (fs) 

optical vortices are exploited in the micro-fabrication of various structures like cavities in glasses,8 single-

layer graphene disks,9 polymer tubes,10,11 silicon conical structures,12 etc.. Moreover, VV beams with 

variable SoP and intensity have been shown to form interesting surface patterns and biomimetic structures 

on the material surface, which are not achievable by the standard beams with a Gaussian intensity 

profile.13–16  

Nowadays, the use of complex light beams in surface micro-processing is emerging as an attractive 

prospect and a promising approach to fabricate functional elements with complex surface structures. 

Laser-induced modifications of the material surface (e.g. phase transformation, melting, ablation, 

structure features, etc.) can strictly depend on the local state of the beam (e.g., fluence and polarization), 

therefore a careful characterization of the beam properties is paramount to gain reliable knowledge on the 
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mechanisms involved in several transformation processes. For intense Gaussian laser beams, Liu 

introduced a simple technique to estimate the beam spot size,17 based on the analysis of the variation of 

the area modified by the laser irradiation vs laser energy. Such an approach is generally exploited in 

experiments with intense beams and is also corroborated by theoretical results in the case of fs laser 

ablation.18 Recently, a similar approach was applied to ablation of Au films irradiated by OV beams 

generated by coupling a spiral phase plate to an axicon,19 and to laser processing of silicon with VV beams 

produced by a q-plate with a topological charge q = 1/2.20 

Here we illustrate an effective method for characterizing the VV beam properties through analysis of the 

annular craters produced in fs laser ablation of silicon. In particular, we show that a direct estimate of the 

beam spot size can be easily obtained by measuring internal and external radii of the annular crater, 

meanwhile the variation of the radii as a function of the laser  pu l se energy provides a more accurate 

way to evaluate the beam spot size through a best fit procedure. Our approach for the detection of the 

beam waist parameter applies to the specific case of VV beams whose radial profile is that of Laguerre-

Gauss (LG) beams, in the lowest radial mode with p=0. Let us note that, although we refer here to the 

case of VV beam, this method can be applied also to uniformly polarized beams, i.e. scalar fields, whose 

spatial structure is that of LG beams carrying OAM. A more complete characterization of the VV beams 

is eventually accomplished by visualization of the laser induce periodic surface structures that has been 

shown earlier to offer a general method to reconstruct the local orientation of the polarization 

state.13,14,16,20,21 Here, we confirm the good agreement between the beam SoP and the surface structures 

also for more complex VV beams with larger OAM values. In metals and semiconductors, at a fixed 

number of irradiating pulses, linearly polarized light leads to sub-wavelength ripples oriented normal to 

the electric field direction above the ablation fluence threshold. In the case of dielectrics, the laser induced 

surface structures follow the local direction of the laser polarization.21,22 In the case of semiconductors, 

as silicon, also supra-wavelength grooves parallel to laser polarization form at larger fluence values, while 

coarser stripes and columnar structures are produced at still higher fluence,15,22–24 which may allow a 
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qualitative reconstruction of the fluence spatial distribution.24 In the present study, silicon is selected 

because it is the most basic and studied semiconductor material, on which well-defined surface structures 

forms under fs laser irradiation.22–26 However, the method can be applied to annular VV beams irradiation 

of other materials at different number of pulses, according to their ablation threshold, and even in tight 

focusing conditions unless the very specific case of a strong longitudinal field component at the focal 

plane,3,8 which can strongly change the fluence spatial profile. 

A fs Ti:Sa system is used as laser source providing linearly polarized pulses of ≈ 35 fs duration and 800 

nm wavelength, with a Gaussian beam spatial profile, at 100 Hz repetition rate. VV beams are generated 

by shining different q-plates (q = 1/2, 1, 3/2, 2, 5/2)27,28 with these laser beams, thus obtaining VV beams 

with an annular spatial profile, where left and right circular polarization components carry OAM with 

values ℓ = ±2q (ℓ = 1, 2, 3, 4, 5), respectively.29 Q-plates are essentially made of two glass plates separated 

by a thin layer of liquid crystals, whose optic axes have been arranged in a singular pattern with 

topological charge q, the latter being an integer or half-integer number.27,28  Using cylindrical coordinates 

with the z being the propagation axis, the spatial distribution of the optical field can be expressed as: 

𝜓""
($) ∝ 𝑓ℓ(𝑟, 𝑧)(𝒆𝒍	𝑒0	ℓ	1 + 𝒆𝒓	𝑒40	ℓ	1)     (1) 

where 𝒆𝒍 and 𝒆𝒓	are the unit vectors associated with the left and right circular polarization states and	𝜑 

the azimuthal angle. The temporal dependence of the field, inherited from the input laser light generated 

by the Ti:Sa system, is not shown here. In this setup indeed it can be treated as a global term not affecting 

the spatial and polarization structure of the field. The normalized function 𝑓ℓ(𝑟, 𝑧), that describes the 

radial distribution of the field, is identical for the two modes carrying opposite value of OAM ±ℓ. In 

general, at the exit of the q-plate, the radial profile is that of Hyper-Geometric Gaussian modes.30,31 

However, by filtering the beam with a circular aperture, we observe that beam profile is well 

approximated by Laguerre-Gauss mode, as discussed below (see Figs. 1(a) and (c)).  

The beam is focused with a lens with a nominal focal length of 75 mm on the surface of a (100) silicon 
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target, in air. The target is mounted on a XY-translation stage located perpendicular to the laser beam 

direction. The beam energy E is varied by tuning the energy of the input Gaussian beam with a 

combination of a half wave plate and a polarizer, while the desired number of laser pulses (N) applied to 

the same spot on the target is selected by means of an electromechanical shutter. The morphology of the 

ablation crater surface is analyzed by scanning electron microscopy (SEM).  

Fig. 1(a) reports the annular spatial intensity distribution of the beam generated by our system with a q-

plate with q=1/2 before the focusing lens, which exemplifies the typical donut shape of VV beams with 

a central region of zero intensity, due to an undefined phase on the beam axis. As an example, Fig. 1(b) 

reports an annular crater (N = 200, E » 40 µJ, q=1) whose shape addresses the good azimuthal symmetry 

of the fluence spatial distribution of the VV beams. Fig. 1(c) shows examples of cross sectional profiles 

of the beam generated by the q-plate for three different values of q, namely q = 1/2, 1, 5/2, registered by 

a CCD positioned after the aperture. In Fig. 1(c), the symbols represent experimental data points and the 

error bar on each cross sectional profile illustrates the corresponding variability thus addressing the good 

axial symmetry of the VV beams. The error bars were obtained by estimating the standard deviation on 

several different cross sectional profiles registered at various azimuthal angles. In Fig. 1(c), the solid 

curves are approximate theoretical profiles of the fluence spatial distribution 𝐹ℓ(𝑟) in terms of the 

Laguerre-Gauss modes subclass 𝐿𝐺9,ℓ,3 as: 

:ℓ(;)
:ℓ,<=>?

= cℓ B
√D;
EF
G
Dℓ
𝑒
4HI

H

JF
H       (2) 

where cℓ = 𝑒Kℓ ℓℓ⁄  is a normalization factor and w0 is the beam waist. The peak value of the fluence 

profile is located on a circle of radius rp, given by: 

 𝑟M = Nℓ
D
𝑤9	       (3) 

and the corresponding value of the peak fluence is 

𝐹ℓ,MPQR = 𝐹ℓS𝑟MT =
DPUℓℓℓ

ℓ!
W
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     (4) 
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As shown in Fig. 1(c), Eq. (2) fits the experimental data rather well with a value of the beam waist after 

the q-plate w0,in=(0.40±0.02) mm.  

 

FIG. 1. (a) Annular spatial intensity distribution of the VV beam generated by a q-plate with q=1/2. (b) 
Example of an annular crater (N = 200, E » 40 µJ, q=1) produced by a VV beam. The internal and external 
circles (dashed lines) delimit the ablated area. (c) Normalized cross sectional profiles of the intensity for 
three different values of the OAM, ℓ: symbols - experimental data; solid curves – fluence profiles 
according to Eq. (2) with w0=0.40 mm. The error bar on each cross sectional profile illustrates its typical 
variability. 

 
 

ℓ 1 2 3 4 5  

w0 
44±3 42±1 44±1 47±4 43±2 Eq. (6) 
43±3 41±3 44±3 48±5 43±3 Eq. (7) 

Table I: values of the beam spot size w0 (in µm) as obtained by using Eq. (6) and numerical fitting to 
Eq.(7) for various VV beams with different OAM, ℓ. 
 

VV beams generated by the q-plate also have a spatially variable polarization depending on the OAM 

value, as described in Eq. (1).29 As an example, Fig. 2(a) reports the expected pattern of the SoP for a VV 

beam with ℓ = 4 in which the arrows indicate the direction of the electric field. Fig. 2(b) shows the SEM 

image of the crater produced by irradiating the target with N = 100 laser pulses, at an energy E » 80 µJ. 

The surface of the annular crater presents surface structures oriented according to the local laser 

polarization, as can be recognized in the zoomed views shown in Figs. 3(c) and 3(d). In Fig. 3(c), one can 

appreciate the rather direct correspondence between the grooves orientation and the SoP pattern of Fig. 

2(a). Moreover, at the inner and external sides of the annular grooved region, two rings are present with 
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ripples directed along the normal to the local laser polarization direction, as exemplified in Fig. 2(d). The 

spatial distribution of these structures qualitatively follows the variation of the local laser fluence, with 

grooves covering the higher fluence region and ripples localized in the less intense part of the beam. This, 

in turn, confirms the close correspondence between the beam SoP and the surface structures also for the 

more complex VV beams with larger OAM values.   

 

FIG. 2. (a) Typical spatial pattern of the SoP for a beam with ℓ = 4; the arrows indicate the local direction 
of the electric field. (b) SEM image of the crater produced by irradiating the target with N = 100 laser 
pulses, at an energy E» 80 µJ. Panels (c) and (d) report zoomed views of the surface structures registered 
at higher magnification. 
 

We turn now to the analysis of the crater to gain an estimate of the beam spot size in the focal plane. We 

assume that the field intensity distribution in the focal plane is also described by LG modes of Eq. (2), 

characterized by a waist parameter equal to w0f. From propagation optics,32 one can estimate an expected 

value of the beam waist at the focal plane 𝑤YZ =
[Z

XEF,\]
^1 + ZH

EF,\]
H `

4a D⁄
that yields a value of (47±2) µm. 

The annular ablation crater is limited by the internal, rin, and external, rex, radii, at which the pulse fluence 

equals the ablation threshold fluence, therefore 𝐹ℓ(𝑟0b) = 𝐹ℓ(𝑟Pc). From Eqs. (2), this yields: 

B;\]
EF
G
Dℓ
𝑒
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HI\]

H

JF
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EF
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Dℓ
𝑒
4HI=d

H

JF
H      (5) 

Solving for w0 one gets: 
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𝑤9 = e
(;=dH4;\]H)

ℓ	$b^I=dI\]
`

       (6) 

Eq. (6) provides a direct and simple way to evaluate the VV beam waist w0 from the measurement of a 

couple of values (rin, rex). This was applied to the craters produced by VV beams at various values of the 

charge 𝑙 and the estimates are summarized in Table I. In our procedure, we carry out  direct measurements 

of the internal and external crater circles (see Fig. 1(b), e.g.), which take into account uncertainties due 

to both the actual beam spatial profile and the variability of circle recognition obtained in repeated 

measurements by different individuals in our team. From double-circles measurements, the mean and 

standard deviation of the internal and external radii (rin, rex) are obtained for different values of the pulse 

energy E at each ℓ and the corresponding w0 is estimated. Within the limited statistics (in some cases only 

few values were used, e.g. for ℓ = 4), the data show a fairly good consistency and the variation and 

uncertainties are likely due to the specific q-plate features and to laser pulse energy fluctuations. 

Moreover, the estimated values show a good consistency with the expected estimate of 𝑤YZ above 

reported. 

 

FIG. 3. Examples of the variation of the internal rin (blue circles) and rex external (red squares) radii as a 
function of the VV beam energy E for three values of ℓ, reported on the top of each panel. The number of 
laser pulses is N = 100 for ℓ = 1 and N = 200 for ℓ = 3 and ℓ = 5, respectively.  
 

We turn now to the dependence of the internal and external radii on the pulse energy. As an example, Fig. 

3 reports the variation of rin and rex on E for three values of the OAM, ℓ. One can observe a gradual 

decrease of the ablated annular region, whose width (rex − rin) diminishes as the energy E reduces. The 
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observed dependence can be described as a solution of the equation: 

 𝐹ℓ(𝑟) = 𝐹gh      (7) 

Fth being the value of the ablation threshold at the selected experimental conditions, i.e. the minimum 

pulse fluence required to induce ablation at the given number of pulses, N.18,26  

An analytical solution for Eq. (7) does not exist, however best fits to the experimental data can be obtained 

through a numerical least-square minimization procedure. By using the beam waist w0 and the threshold 

fluence Fth as fitting parameters, the curves reported as solid lines in Fig. 3 were obtained. The obtained 

values of w0 are reported in Table I and result in good agreement with the previous estimates given by 

Eq. (6). The curves describe fairly well the experimental data with two branches departing from a radius 

rp, at which the ablated region degenerates into a limiting circumference (i.e., rex = rin = rp), and a value 

of Eth, below which no surface ablation occurs at the selected number of pulses, N. The variation of rp as 

a function of the OAM is shown in Fig. 4. The solid line is a fitting curve to the dependence 𝑟M =
EF
√D
ℓi 

yielding w0 = (43±3) µm and a =  (0.53±0.05), in fairly good agreement with Eq. (3).  The value of Eth is 

consistent with the ablation threshold Fth. The obtained values of Fth are (0.10±0.02) J/cm2 for the silicon 

sample irradiated by N = 100 VV laser pulses with ℓ = 1 and (0.21±0.05) J/cm2 for the sample irradiated 

by N=200 laser pulses with ℓ = (2÷5). The ablation threshold depends upon the material properties, the 

pulse characteristics and the number of applied pulses, N.26,33 In particular, Fth generally decreases at 

larger number of pulses. The different values of Fth registered in the present case are due to the different 

characteristics of the sample target used in the experiments carried out with ℓ = 1 and for ℓ = (2÷5) VV 

beams, respectively. In fact, in the latter case intrinsic Si (100) samples (resistivity > 200 Wcm) were used 

as targets, while in the former case a p-doped Si (100) plate (resistivity 15÷25 Wcm) was exploited. The 

value of the ablation threshold for the intrinsic silicon is in agreement with recent values reported for 

undoped Si ablated by 800 nm, » 110 fs laser pulses.33 Moreover, the reduction of the ablation threshold 

observed for the doped Si sample is likely due to the increase of free carrier concentration, as 
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demonstrated in recent reports.33,34  

 

FIG. 4. Variation of the peak radius, rp, as a function of the value of the index ℓ. The line is a fitting 
curve to the relation 𝑟M =

EF
√D
ℓi yielding w0 = (43±3) µm and a = (0.53±0.05) in fairly good agreement 

with Eq. (3). 
 

Finally, we would like to stress that a reliable measure of the beam waist is paramount in order to address 

the mechanisms involved in laser-induced modifications of a material. For example, we estimated the 

fluence level for which the transition from a rippled to a grooved pattern occurs after N = 100 laser pulses 

for the various OV beams considered above. We observe that for ℓ = 1 such a transition occurs at » 0.24 

J/cm2, while for ℓ=(2÷5) it takes place at » 0.5 J/cm2. Such observation suggests that the level of doping 

of the silicon target also influences the grooves formation process, besides determining the ablation 

threshold. 

In conclusion, we illustrated a simple and direct experimental method based on the analysis of laser 

ablation spots that allows ascertaining fs VV beam properties. Our approach demonstrates a reliable 

characterization of intense fs VV beams in weak focusing conditions, which are more and more exploited 

in fs laser micro-processing applications. In particular, we have discussed various ways to gather an 

estimate of the beam spot size that eventually defines the spatial profile of the laser fluence. Furthermore, 

our findings confirms that the orientation of the laser-induced surface structures provides a direct clue on 

the local polarization of the beam. The proposed approach can likely be extended to other materials or to 

VV beams with still higher OAM values in their polarization components. Finally, an appropriate 
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selection of the target material and type of modification can allow a reliable and precise characterization 

of VV beams at other laser wavelengths.  
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