

Quantum Walks as iterated Unitary processes

7.2: 108-114.

 $U = S \cdot C(\theta); \ |\psi(t)\rangle = U^t |\psi(0)\rangle$

$$U^{t} = Exp\left(-\frac{iH_{eff}}{\hbar}t\right)$$

40

Quantum Walks as iterated Unitary processes

$$U^{t} = \int_{-\pi}^{\pi} \mathcal{U}^{t}(q) \otimes |q\rangle \langle q| \frac{dq}{2\pi} \qquad |q\rangle \coloneqq \sum_{X} e^{iqX} |X\rangle$$

Kitagawa, Takuya. "Topological phenomena in quantum walks: elementary introduction to the physics of topological phases." *Quantum Information Processing* 11 (2012): 1107-1148.

Université d'Ottawa | University of Ottawa

Customizing space dependent unitaries

Liquid crystal metasurfaces

- Fixed retardation
- Variable optical axis

Spatial light modulators

- Variable retardation
- Fixed optical axis

Di Colandrea, Francesco, et al. "Ultra-long quantum walks via spin–orbit photonics." *Optica* 10.3 (2023): 324-331. M.G. Ammendola et al. *In preparation*

QW with structured light

Geometry of $\mathcal{U}(q)$ $\mathcal{U}^t(q) = \exp(-i t E(q) n(q) \cdot \sigma)$

Kitagawa, Takuya. "Topological phenomena in quantum walks: elementary introduction to the physics of topological phases." *Quantum Information Processing* 11 (2012): 1107-1148.

Geometry of U(q): **quantum metric**

PHYSICAL REVIEW LETTERS 131, 240001 (2023)

Essay: Where Can Quantum Geometry Lead Us?

Päivi Törmä[®] Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland (Received 17 November 2023; published 11 December 2023)

Kang, M., Kim, S., Qian, Y. *et al.* Measurements of the quantum geometric tensor in solids. *Nat. Phys.* (2024). https://doi.org/10.1038/s41567-024-02678-8

 $distance(|\mathbf{n}(q_1)\rangle, |\mathbf{n}(q_2)\rangle) =?$

Quantum Geometric Tensor (Fubini Study metric)

$$\eta_{ij}(q) = \left\langle \partial_i \boldsymbol{n} \middle| \partial_j \boldsymbol{n} \right\rangle - \left\langle \boldsymbol{n} \middle| \partial_i \boldsymbol{n} \right\rangle \left\langle \boldsymbol{n} \middle| \partial_j \boldsymbol{n} \right\rangle$$

$$d\ell^2 = Re\big[\eta_{ij}(q)\big]dq_idq_j$$

Provost, J. P., and G. Vallee. "Riemannian structure on manifolds of quantum states." *Communications in Mathematical Physics* 76 (1980): 289-301.

Quantum metric under chiral symmetry

chiral (or sublattice)symmetry: $\boldsymbol{n}(q) \perp \boldsymbol{v}_{\Gamma}$ for each q

Topology of $\mathcal{U}(q)$ (in 1D)

chiral symmetry: $\boldsymbol{n}(q) \perp \boldsymbol{v}_{\Gamma}$ for each q

Winding number:

$$\nu = \int_{-\pi}^{\pi} \sqrt{\eta(q)} \frac{dq}{2\pi}$$

$$\sqrt{\eta(q)} = \partial_q \phi$$

Kitagawa, Takuya. "Topological phenomena in quantum walks: elementary introduction to the physics of topological phases." *Quantum Information Processing* 11 (2012): 1107-1148.

Topology and Geometry in Chiral symmetric Systems

Mean chiral displacement

$$\mathcal{C}(t) \coloneqq \langle x \rangle_B - \langle x \rangle_A$$

Cardano, Filippo, et al. "Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons." *Nature communications* 8.1 (2017): 15516.

Mean chiral displacement measures winding numbers

$$\begin{array}{l} \mathcal{C}(t) \coloneqq \langle \psi(t) | \Gamma x | \psi(t) \rangle \\ \Gamma \coloneqq |B\rangle \langle B| - |A\rangle \langle A|. \end{array} \end{array} \begin{array}{l} \mathcal{C}(t) \stackrel{t \gg 0}{\sim} \sqrt{2} \qquad |\psi(t=0)\rangle = |x=0\rangle \otimes |c_0\rangle \end{array}$$

Bulk measurement of v

Nature communications 8.1 (2017): 15516.

Physical Review Research 2.2 (2020): 023119

Mean chiral displacement

$$|\psi(t=0)\rangle = \int g_w(q-q_0)|q\rangle dq \otimes |c_0\rangle$$

$$g_w$$

$$\mathcal{C}(t) \coloneqq \langle \psi(t) | \Gamma x | \psi(t) \rangle$$
$$\Gamma \coloneqq |B\rangle \langle B| - |A\rangle \langle A|.$$

Di Colandrea, Francesco, et al. "Manifestation of the quantum metric in chiral lattice systems." *Communications Physics* 7.1 (2024): 265.

Mean chiral displacement of initially delocalized states $\mathcal{C}(t)^{t \gg 0} \int g_{w}^{2}(q-q_{0})\sqrt{\eta(q)}dq/2$

Di Colandrea, Francesco, et al. "Manifestation of the quantum metric in chiral lattice systems." *Communications Physics* 7.1 (2024): 265.

MCD and quantum metric

Université d'Ottawa

University of Ottawa

Di Colandrea, Francesco, et al. "Manifestation of the quantum metric in chiral lattice systems." *Communications Physics* 7.1 (2024): 265.

MCD and quantum metric

Di Colandrea, Francesco, et al. "Manifestation of the quantum metric in chiral lattice systems." *Communications Physics* 7.1 (2024): 265.

MCD and quantum metric

Graphene Hamiltonian

M.G. Ammendola et al. In preparation

Conclusions and prospects

The quantum metric of chiral symmetric systems can be extracted from the MCD

The distribution of a wavepacket on two sublattices is directly affected by the quantum metric

To do: extension of the results to higher-dimensional internal states, non-hermitian dynamics, and interacting systems

2.5

♦ Exp.

PHD and Postdoc Positions Available

Université d'Ottawa | University of Ottawa

Reconstructing the full unitary: Fourier Quantum Process Tomography

Di Colandrea, Francesco, et al. "Fourier quantum process tomography." npj Quantum Information 10.1 (2024): 49.