R A A CHEN NIVERSITY

Quantum cellular automata for quantum error correction and density classification¹

T. L. M. Guedes, D. Winter, M. Müller

1. Phys. Rev. Lett. 133.150601 (2024)

Protect against quantum errors

Example

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

Example

 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ $\int Encode$ $|\psi_L\rangle = \alpha|00000\rangle + \beta|1111\rangle$

1

Example

 $\begin{aligned} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \\ \downarrow \quad \text{Encode} \\ |\psi_L\rangle &= \alpha |00000\rangle + \beta |11111\rangle \\ \downarrow \quad \text{Errors} \\ |\psi_L\rangle &= \alpha |01001\rangle + \beta |10110\rangle \end{aligned}$

Extract error information

Example

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $\downarrow \text{Encode}$ $|\psi_L\rangle = \alpha |00000\rangle + \beta |11111\rangle$ $\downarrow \text{Errors}$ $|\psi_L\rangle = \alpha |01001\rangle + \beta |10110\rangle$

Classical algorithm (decoder)

Example

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $\downarrow \text{Encode}$ $|\psi_L\rangle = \alpha |00000\rangle + \beta |11111\rangle$ $\downarrow \text{Errors}$ $|\psi_L\rangle = \alpha |01001\rangle + \beta |10110\rangle$ $\downarrow 1101$

Autonomous, measurementfree quantum cellular automaton dynamics to stabilize logical qubits?

Conway's game of Life (1970)

<u>Rules</u>

- 1. Live cell with <2 live neighbors dies (underpopulation)
- 2. Live cell with 2 or 3 live neighbors stays alive
- 3. Live cell with >3 live neighbors dies (overpopulation)
- 4. Dead cell with exactly 3 live neighbors becomes alive (reproduction)

Conway's game of Life (1970)

Complex emergent dynamics from simple local rules

<u>Rules</u>

- 1. Live cell with <2 live neighbors dies (underpopulation)
- 2. Live cell with 2 or 3 live neighbors stays alive
- 3. Live cell with >3 live neighbors dies (overpopulation)
- 4. Dead cell with exactly 3 live neighbors becomes alive (reproduction)

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells

Definition

τ , t+1

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells
- Local rule $f: N_d \to S$ updates cell state

Definition

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells
- Local rule $f: N_d \to S$ updates cell state

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells
- Local rule $f: N_d \to S$ updates cell state

Definition

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells
- Local rule $f: N_d \to S$ updates cell state
- Configuration $C \in Conf$

Definition

- Lattice L_d of cells in d dimensions
- Each cell has state space S
- Neighborhood N_d of cells
- Local rule $f: N_d \to S$ updates cell state
- Configuration $C \in Conf$
- Global rule $F: Conf \rightarrow Conf$
 - Applies local rule synchronously

Definition

Density classification

• Want: $|\psi_L\rangle = \alpha |01001\rangle + \beta |1010\rangle \rightarrow |\psi_L\rangle = \alpha |00000\rangle + \beta |1111\rangle$

- Want: $|\psi_L\rangle = \alpha |01001\rangle + \beta |1011\rangle \rightarrow |\psi_L\rangle = \alpha |00000\rangle + \beta |1111\rangle$
- Classically: Density classification problem
 - Given bit string of n = i + j bits with *i* zeros and *j* ones
 - Evolve bit string to all-zeros if i > j and to all-ones if j > i

Density classification

Is Rule 232 a good density classifier?

Is Rule 232 a good density classifier?

Cannot remove clusters. No good density classifier.

Two-Line Voting: A better density classifier?

Two-Line Voting

Color map

Color map

Linear eroder of error clusters. Better density classifier.

Two-Line Voting

Density classification under continuous noise

- In QEC, we assume every circuit component (gates, measurements,...) is noisy.
 - Application of each global rule subject to noise

nt (gates, measurements,...) is noisy. 5 noise

Density classification under continuous noise

- In QEC, we assume every circuit component (gates, measurements,...) is noisy.
 - Application of each global rule subject to noise

- We define finite, unitary QCA with periodic boundary conditions
 - Related to infinite QCA via wrapping lemma

- We define finite, unitary QCA with periodic boundary conditions
 - Related to infinite QCA via wrapping lemma
- Lattice L_d of cells in d dimensions
- Each cell: Quantum system with Hilbert space \mathcal{H}_i ,observable algebra \mathcal{A}_i

- We define finite, unitary QCA with periodic boundary conditions
 - Related to infinite QCA via wrapping lemma
- Lattice L_d of cells in d dimensions
- Each cell: Quantum system with Hilbert space \mathcal{H}_i , observable algebra \mathcal{A}_i • Configuration $|\zeta\rangle \in \mathcal{H} = \bigotimes_{i \in L_d} \mathcal{H}_i$ and algebra $\mathcal{A} = \bigotimes_{i \in L_d} \mathcal{A}_i$
- Global update $u(A) = U^{\dagger}AU$ with $A, U \in \mathcal{A}$ (finite L_d)

- We define finite, unitary QCA with periodic boundary conditions
 - Related to infinite QCA via wrapping lemma
- Lattice L_d of cells in d dimensions
- Each cell: Quantum system with Hilbert space \mathcal{H}_i , observable algebra \mathcal{A}_i • Configuration $|\zeta\rangle \in \mathcal{H} = \bigotimes_{i \in L_d} \mathcal{H}_i$ and algebra $\mathcal{A} = \bigotimes_{i \in L_d} \mathcal{A}_i$ • Global update $u(A) = U^{\dagger}AU$ with $A, U \in \mathcal{A}$ (finite L_d)
- - Locality-preserving: $u: \mathcal{A}_i \to \mathcal{A}_{R_i}$ for finite region R_i
 - Product of local unitaries $U = \prod U_i$ $i \in L_d$

Quantum version of 232 and TLV

Local majority function: $f(a, b, c) = ab \bigoplus bc \bigoplus ac$

Disentangle: Keep code space constant

Disentangle: Keep code space constant

- Performance of Q232 and QTLV

Concatenation

$|0\rangle_L \sim (|000\rangle + |111\rangle)^{\otimes 3}$ $|1\rangle_L \sim (|000\rangle - |111\rangle)^{\otimes 3}$

Correct bit and phase flip errors

Shor code¹

Concatenation

Correct bit and phase flip errors

T. Guedes, M. Müller

- QCA are local, measurement-free, fully autonomous
 - Attractive for future and near-term experiments
 - Within experimental reach
- Full QEC and QEC thresholds via concatenation

QCA: New paradigm in quantum error correction with many attractive properties for experimental realizations

Summary

Link to paper

Threshold by concatenation

Concatenated QCA

45

Threshold by concatenation

Q232/QTLV noise model

Gate noise

47