

14-17 January 2025, Naples, Italy

#### 11th INTERNATIONAL CONFERENCE ON QUANTUM SIMULATIONS AND QUANTUM WALKS - @QSQW2025

QUANTUM SIMULATIONS AND QUANTUM WALKS - @QSQW2025

# Quantum walks (QWs) of correlated photons in engineered photonic lattices

#### **Chong Sheng**

Nanjing University, China csheng@nju.edu.cn 2025/01/15

### Content

- I. Research Background.
- **II.** QWs in the emulated curved space.
- **III.** QWs in non-Hermitian photonic lattices.
- **IV. Brief Summary.**

### **Quantum Simulation (QS)**

#### **Richard Feynman**



One could employ a controllable quantum system to mimic other quantum systems to dispose of these intractable problems

#### Quantum computation



Hawking Radiation



Hawking radiation using QS



### **Photonic Quantum Simulation**

Spontaneous Hawking radiation



Phys. Rev. Lett. 105, 203901 (2010)

Quantum fast hitting



Nat. Photon 12, 754 (2018)

Stimulated Hawking radiation



Phys. Rev. Lett. 122, 010404 (2019)

Topological physics



Phys. Rev. Lett. 122, 193903 (2019)

Dirac particle separation



National Science Rev. 7,1476 (2020)

Non-Hermitian physics





### **On-chip Photonic Simulation @ our group**









### **QWs using photonic lattices**



### Content

- I. Research Background.
- **II.** QWs in the emulated curved space.
- **III.** QWs in non-Hermitian photonic lattices.
- **IV.** Brief Summary.

#### QWs in curved space

#### Motivation: What about quantum walks in curved space?



### Synthetic horizons using photonic lattices



### **Trapping photons by synthetic horizons**





Chong Sheng\*,..., Shi-Ning Zhu, Hui Liu\*, Phys. Rev. A 103, 099703 (2021)

### Photons escape cause by quantum inferences



Chong Sheng\*,..., Shi-Ning Zhu, Hui Liu\*, Phys. Rev. A 103, 099703 (2021)

### **Experimental demonstration**

#### Nonuniform silicon lattices



#### Experimental setup



#### Coupling coefficients



#### Quantum light sources



Runqiu He, Yule Zhao, Chong Sheng\*,..., Shi-Ning Zhu, Hui Liu\*, Phys. Rev. Research 6, 013233 (2024)

### **Experimental demonstration**



#### Two indistinguishable photons



#### Entangled photons



Runqiu He, Yule Zhao, Chong Sheng\*,..., Shi-Ning Zhu, Hui Liu\*, Phys. Rev. Research 6, 013233 (2024)

Antibunching

### Content

- I. Research Background.
- II. QWs in the emulated curved space.
- **III.** QWs in non-Hermitian photonic lattices.
- **IV. Brief Summary.**

### **Non-Hermitian optics: QWs**

#### Motivation: entropy in non-Hermitian photonic lattices ?



### **Non-Hermitian photonic lattices**



The modulation by the auxiliary waveguide:  $R \sin(\omega t + \phi)$ 

The relevance of the Lyapunov exponent to the geometric phase ( $\varphi$ )



### **QWs of single photons**

#### The unidirectional behavior vs. Lyapunov exponents and evolution periods



### QWs of two indistinguishable photons

#### The coincident distribution vs. Lyapunov exponents and evolution periods



### Lindblad master equation





$$\begin{aligned} H_{S} &= \beta_{0} \sum_{i} a_{i}^{\dagger} a_{i} \\ H_{E} &= \sum_{k} \omega_{k} b_{k}^{\dagger} b_{k} \text{ assumption for the loss process in our system} \\ V &= \sum_{k,i} \left( g_{k} b_{k} + g_{k} b_{k}^{\dagger} \right) \left( a_{i} + a_{i}^{\dagger} \right) \end{aligned}$$

**Effective non-Hermitian Hamiltonian** under semi-classical limit

$$H'_{eff} = H' - i\sum_{i} a_i^{\dagger} a_i$$

### **Entanglement entropy and skin effect**



#### Rényi entropy suppressed by the skin effect



### Content

- I. Research Background.
- II. QWs in the emulated curved space.
- **III.** QWs in non-Hermitian photonic lattices.
- **IV. Brief Summary.**

#### **Conclusion and Prospect**

Photonic lattices are a promising platform for quantum simulation.



#### Non-Hermitian physics



#### **Conclusion and Prospect**



#### Collaborators

- Prof. Shining Zhu @ Nanjing University
- Prof. Hui Liu @ Nanjing University
- Prof. Yanxiao Gong @ Nanjing University
- Prof. Kun Ding @ Fudan University
- Prof. Liangliang Lu @ Nanjing Normal University
- Dr. Runqiu He@ Nanjing University
- Dr. Yule Zhao @ Nanjing University
- Dr. Mingyuan Gao @ Nanjing University

#### Funds

- National Key Research and Development
  Program of China (2023YFB2805700)
- National Natural Science Foundation of China (12174187, 92150302, 62288101)
- •Natural Science Foundation of Jiangsu Province, China (BK20240164, BK20243009)





## Thanks! Welcome for discussion!

### **Transformation Optics**



#### **Maxwell Equations**

 $\nabla \times \vec{E} = -\mu(\mathbf{r}) \cdot \partial \vec{H} / \partial t$  $\nabla \times \vec{H} = \boldsymbol{\varepsilon}(\mathbf{r}) \cdot \partial \vec{E} / \partial t$ 

**Einstein Equations** 

 $R_{uv} - \frac{1}{2} \mathbf{g}_{uv} R = -\frac{8\pi G}{c^4} T_{uv}$ 

#### **Metamaterials**



IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)

Transformation Optics The relation of material parameters and metrics in curved space:

$$\varepsilon_{ij} = \mu_{ij} = \mp \frac{\sqrt{-g}}{g_{00}} \mathbf{g}^{ij}, w_i = \frac{g_{0i}}{g_{00}}$$

Phys. Rev. 118, 1396 (1960); Gene.Relativity .Grav. 2, 247 (1971); New.J.Phys. 8, 247 (2006).



The dynamics of single-photon wave packet in photonic waveguide lattice can be described by a set of coupled discrete Schrodinger equations, which is derived from Schrodinger-type paraxial wave equation by employing the tight-binding mode:

$$i \,\partial \varphi_m / \partial z = \beta_0 \varphi_m - \kappa_m \varphi_{m-1} - \kappa_{m+1} \varphi_{m+1}$$







In experiments, the lattice system has total sites N = 9.