

Finanziato dall'Unione europea NextGenerationEU

Classification of One-dimensional Single Fermionic Quantum Cellular Automata

Paolo Meda

Department of Physics, University of Pavia @ INFN Sec. Pavia

QSQW2025

Naples (IT) @ January 16th, 2024

Joint work with L. S. Trezzini, M. Lugli, A. Bisio, P. Perinotti, and A. Tosini

arXiv preprint: 2501.05349

PLAN OF THE TALK

- Quantum Cellular Automata
- Fermionic Cellular Automata (FCA)
- Main result 1°: Circuital Implementability
- **Main result 2°: Classification of 1-D FCA**

QUANTUM CELLULAR AUTOMATA

O

 \bigcirc

Ο

 \bigcirc

 \bigcirc

 \subset

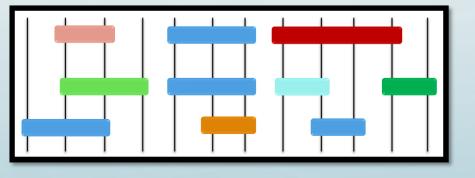
Quantum Cellular Automata (QCA) are the quantum version of Cellular Automata. The space of states spans a finite**dimensional Hilbert space** \mathcal{H}_x such that $\mathcal{U}: \bigotimes_x \mathcal{H}_x \to \bigotimes_x \mathcal{H}_x$ is a unitary operator describing the discrete-time evolution Heisenberg The action of α is assigned on the algebra of observables $\mathcal{A}(\mathcal{L})$ on an infinite lattice $\mathcal{L} \subseteq \mathbb{Z}^{s}$ [1] $N^+(\Lambda)$ $\alpha: \mathcal{A}(\mathcal{L}) \to \mathcal{A}(\mathcal{L})$ t=0 $\alpha(A_1A_2) = \alpha(A_1)\alpha(A_2)$ automorphism • $A_{\Lambda} \in \mathcal{A}_{\Lambda} \Rightarrow \alpha(A_{\Lambda}) \subset \mathcal{A}(\Lambda + N^{+}(\Lambda))$ locality • $N^{-}(\Lambda)$ • $\alpha \circ \tau_x = \tau_x \circ \alpha$, $\tau_y(\mathcal{A}_x) = \mathcal{A}_{y+x}$ shift automaton translational invariant $\alpha(\mathcal{A}_{r}) = \alpha(\mathcal{A}_{o})$ local transition rule ٠ Λ: $\Lambda + N^+(\Lambda)$: Quantum foundations, computation, and simulation \geq pplications Quantum field theories and topological phases of matter \geq $\Delta \Lambda = (\Lambda + N^+(\Lambda))/\Lambda:$

EXAMPLES OF QCA

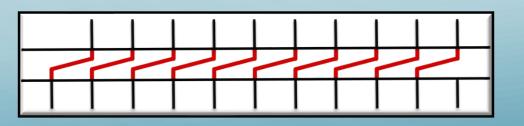
- Finite lattice, with finite dimensional systems at each site
 - $\alpha(\mathbf{0}) = \mathbf{U}^{\dagger}(\mathbf{0} \otimes \mathbf{I}) \mathbf{U}$ U unitary matrix
- > **Quantum circuits** are QCA...

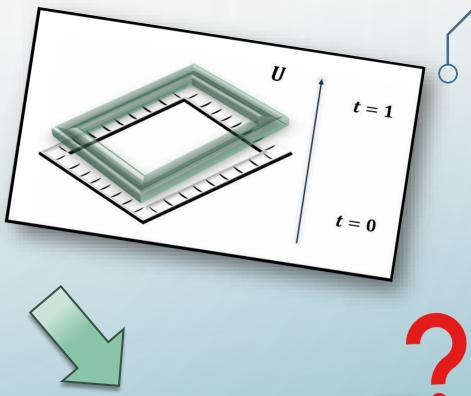
 \succ

 \triangleright



... But **not all** QCA are quantum circuits! (Ex: Shift τ)





- How many automata may you find? (classification)
- Are automata finite depth quantum circuit (FDQC)? (circuital implementability)

FERMIONIC CELLULAR AUTOMATA

6

 \bigcirc

Ó

 \bigcirc

 \bigcirc

Fermionic theories \Rightarrow Fermionic (CAR) Algebra for finitely many Local Fermionic Modes arranged on $\mathcal{L} \subseteq \mathbb{Z}$ [2].

$$\left\{\phi_{x},\phi_{y}^{\dagger}\right\} = \delta_{xy}I, \qquad \left\{\phi_{x},\phi_{x}\right\} = \left\{\phi_{y},\phi_{y}\right\} = 0, \qquad \forall x,y \in \mathcal{L}$$

♣ Represent the CAR of Local Fermionic Modes by assigning the pair of odd operators (X_x, Y_x) to each site $x \in \mathcal{L}$

$$X_{\chi} = \frac{\phi_{\chi} + \phi_{\chi}^{\dagger}}{\sqrt{2}}, \qquad Y_{\chi} = \frac{-i(\phi_{\chi} - \phi_{\chi}^{\dagger})}{\sqrt{2}}, \qquad Z_{\chi} = iY_{\chi}X_{\chi} = \frac{\phi_{\chi}^{\dagger}\phi_{\chi} - \phi_{\chi}\phi_{\chi}^{\dagger}}{2} \qquad \frac{\text{Fermionic Paul}}{\text{matrices}}$$

↔ Parity Superselection Rule \Rightarrow CAR algebra is a \mathbb{Z}_2 -graded algebra of observables $\mathcal{A} = (\mathcal{A}^0, \mathcal{A}^1)$

 \succ $A \otimes B$ is replaced by $A \boxtimes B$ (graded tensor product)

▶ $\{[O_1, O_2]\} = O_1 O_2 - (-1)^{\deg O_1 \deg O_2} O_2 O_1$ (graded commutator)

Fermionic Cellular Automata (FCA) are automorphisms $\mathcal{T}: \mathcal{A}(\mathbb{Z}) \to \mathcal{A}(\mathbb{Z})$ of the \mathbb{Z}_2 -graded algebra $\mathcal{A}(\mathbb{Z})$ which preserve the parity of its elements: $\{\mathcal{T}(\xi_x), \mathcal{T}(\eta_x)\} = 0$ for all (ξ_x, η_x) odd generators of CAR

7 (

[3] D. Gross et al. "Index theory of one dimensional quantum walks and cellular automata". Commun. Math. Phys. **310**, 419-454 (2012).
[4] L. Fidkowski et al. "Interacting invariants for Floquet phases of fermions in two dimensions". Phys. Rev. B **99**, 085115 (2019).

INDEX THEORY FOR QCA AND FCA

* The Left and Right Support Algebras L_{2x} , R_{2x} describe how many information "moves left and right"

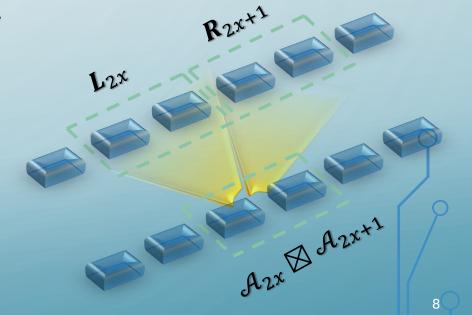
 $L_{2x} = S(\mathcal{T}(\mathcal{A}_{2x} \boxtimes \mathcal{A}_{2x+1}), \mathcal{A}_{2x-1} \boxtimes \mathcal{A}_{2x}) \qquad R_{2x+1} = S(\mathcal{T}(\mathcal{A}_{2x} \boxtimes \mathcal{A}_{2x+1}), \mathcal{A}_{2x} \boxtimes \mathcal{A}_{2x+1})$ $\mathcal{T}(\mathcal{A}_{2x} \boxtimes \mathcal{A}_{2x+1}) = L_{2x} \boxtimes R_{2x+1}$

Index of a QCA (FCA) is a local invariant that quantifies the net flow

of "quantum information"

$$ind(\mathcal{T}) = \sqrt{\frac{\dim(\boldsymbol{L}_{2x})}{\dim(\mathcal{A}_{2x})}} = \sqrt{\frac{\dim(\mathcal{A}_{2x+1})}{\dim(\boldsymbol{R}_{2x+1})}}$$

Index-one QCA are FDQC!



EXAMPLES OF FCA AND FERMIONIC INDEX

► **Conjugation:** $SU(2) = (SU^0(2), SU^1(2))$ special unitary group

 $\mathcal{U}(A_x) = U^{\dagger}(A_x \boxtimes I)U, \qquad U \in SU^{0,1}(2)$

> Majorana shift (Fermionic translation):

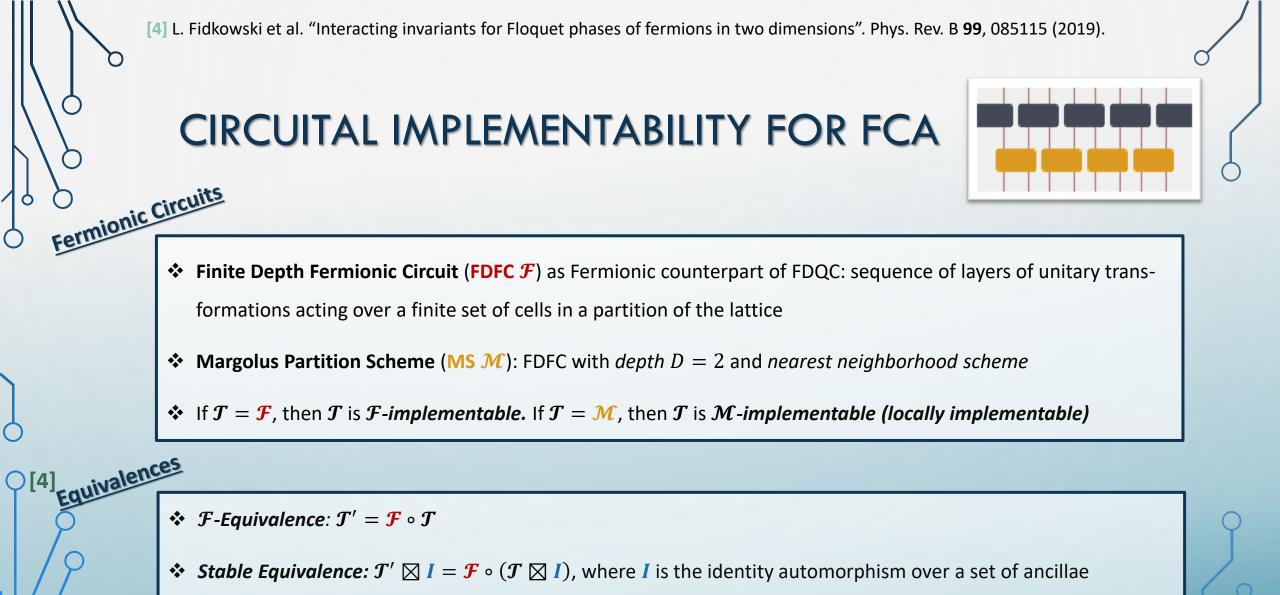
 $\sigma_+: (X_x, Y_x) \mapsto (Y_x, X_{x+1})$ $\sigma_-^{-1}: (X_x, Y_x) \mapsto (Y_{x-1}, X_x)$

Given a support algebra S_x ,

$$ind(\mathcal{T}) = \begin{cases} \frac{p+q}{d} \in \mathbb{Q}, & S_x \simeq Mat(\mathbb{C}^{p|q}) \\ \sqrt{2} & \frac{p+q}{d} \in \mathbb{R}, & S_x \simeq \mathcal{C}\ell_1(p|q) \end{cases}$$

Examples: $ind(I) = 1$, $ind(\tau_x^{\pm}) = d^{\pm 1}$, $\dim \mathcal{H}_x = d$, $ind(\sigma_+) = 2^{\pm 1}$

9 (



• If $ind(\mathcal{T}) = ind(\mathcal{T}')$, then $\mathcal{T}, \mathcal{T}'$ are stably equivalent, in particular \mathcal{M} -stably equivalent on supercells

\therefore Every **index-one FCA** is \mathcal{M} -implementable over the enlarged system of ancillae: $\mathcal{T} \boxtimes I = \mathcal{M}$

MAIN RESULTS

6

0

 \bigcirc

Q

Q

Ó

(

O

[5] M. Freedman et al. "The Group Structure of Quantum Cellular Automata". Commun. Math. Phys. 389, 1277-1302 (2022).

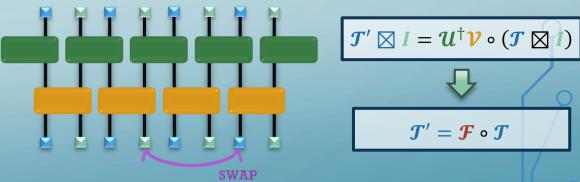
ANCILLA REMOVAL FOR FCA

Ancilla Removal $[5] \Rightarrow$ No ancillas are needed to implement index-one FCA as quantum circuits!

- ✓ Every index-one FCA satisfies \mathcal{F} -implementability ($\mathcal{T} = \mathcal{F}$)
- ✓ If $ind(\mathcal{T}) = ind(\mathcal{T}')$, then $\mathcal{T}' = \mathcal{F} \circ \mathcal{T}$
- Upon regrouping of cells, \mathcal{F} may be recast in \mathcal{M}

Ancilla Removal

- "Borrowing": replacing the action on an ancilla with the same action on a sufficiently distant physical cell
- The circuit U[†]V acts trivially on the ancillae ⇒ physical cells keep the same state as before the updating



CLASSIFICATION OF ONE-DIMENSIONAL FCA

Classify FCA on one-dimensional lattice of a single Local Fermionic Mode cells isomorphic to $Mat(\mathbb{C}^{1|1})$

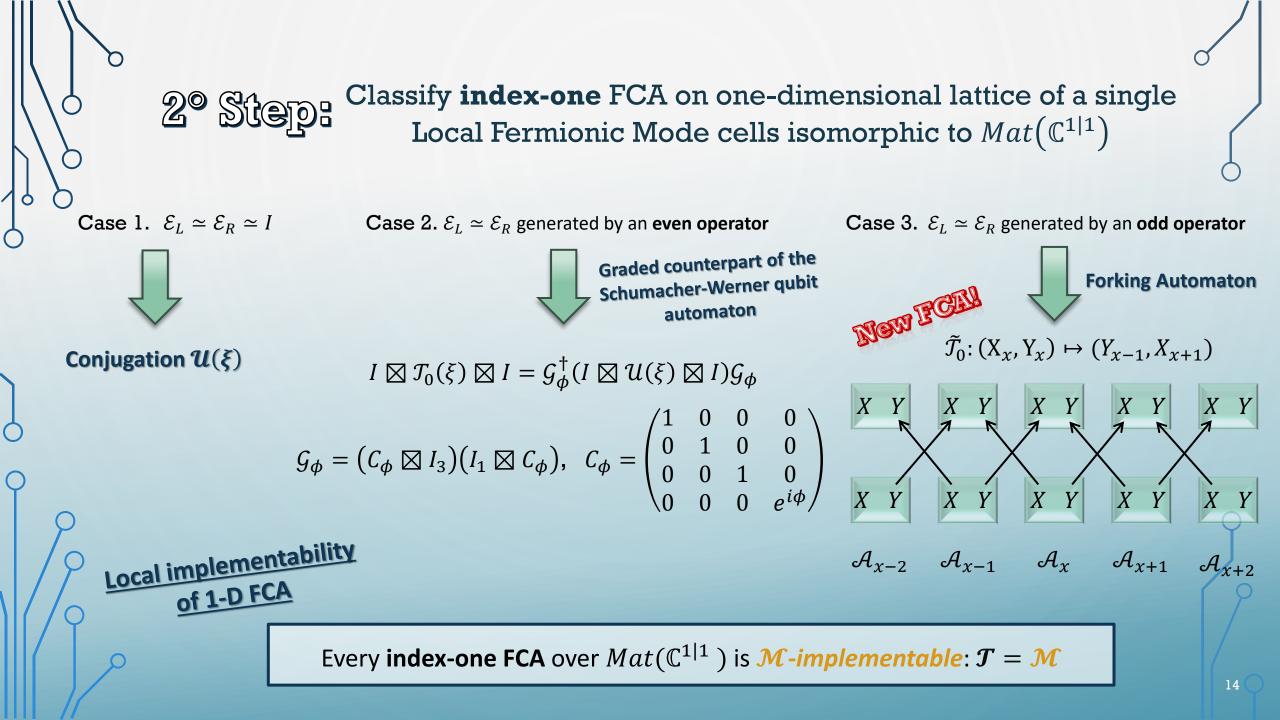
- The generators of the Local Fermionic Mode located in x are (X_x, Y_x)

• If
$$\mathcal{A}_x \simeq Mat(\mathbb{C}^{1|1})$$
, then $ind(\mathcal{T}) = 1, 2^{\pm \frac{1}{2}}, 2^{\pm 1}$

1° Step:

1. Every FCA \mathcal{T} with $ind(\mathcal{T}) = 2^{\pm 1}$ is of the form $\mathcal{T} = \tau_x^{\pm} \circ S$ ind(S) = 12. Every FCA \mathcal{T} with $ind(\mathcal{T}) = 2^{\pm \frac{1}{2}}$ is of the form $\mathcal{T} = \sigma_{\pm} \circ S$

Classify all index-one FCA



SUMMARY & FUTURE OUTLOOKS

Fermionic Cellular Automata (FCA)

Circuital implementability of FCA

Equivalence of FCA

Classification of 1-D FCA

- **Classification of more general FCA**
- Renormalization of FCA
- Thermal Theory for QCA

Thanks for the attention!

...