interacting topological pumps in Rydberg synthetic dimensions

Bryce Gadway Penn State University

QSQW2025 (Napoli)

January 14, 2025

emergent phenomena by design

Mazurenko et al., Nature (2017)

emergent phenomena by design

fractional quantum Hall (FQH) states

quantum spin liquids (QSL)

start with **frustration** as a central ingredient (and add interactions)

synthetic quantum matter – lattice networks

neutral atoms in optical lattices

Cs QGM Aidelsburger group

Feng, et al. Nature (2023)

spin excitations on a lattice of ions
(or Rydbergs/molecules/qubits/...)

photonic arrays (e.g., waveguide arrays)

Rechtsman group

synthetic quantum matter – lattice networks

some typical constraints

- atoms / excitations are neutral
 - natural hopping is real-valued, so hard to mimic
 effective magnetic fields (kinetic frustration)
- "hopping" graphs have some physical constraints

 $\widehat{H} = \sum_{i} \epsilon_{i} \widehat{c}_{i}^{\dagger} \widehat{c}_{i} - t \sum_{i} \left(\widehat{c}_{i+1}^{\dagger} \widehat{c}_{i} + \widehat{c}_{i}^{\dagger} \widehat{c}_{i+1} \right)$

site orbital energies (diagonal) tunneling terms (off-diagonal)

synthetic tight-binding models (i.e., a lattice of internal states)

particles pick up the <u>phase</u> of driving fields when undergoing transitions

some typical constraints

- atoms / excitations are neutral
 - natural hopping is real-valued, so hard to mimic
 effective magnetic fields (kinetic frustration)
- "hopping" graphs have some physical constraints

can *naturally* implement complex hopping and artificial gauge fields

some constraints (e.g., dipole selection rules), but more flexibility

synthetic tight-binding models (i.e., a lattice of internal states)

Ozawa & Price, Nat. Rev. Phys. (2019)

Ozawa & Price, Nat. Rev. Phys. (2019)

• hyperfine states

Stuhl, et al. Science (2015)

Ozawa & Price, Nat. Rev. Phys. (2019)

• hyperfine states

Chalopin, et al. (Nat. Phys., 2019)

[see also Cardano, et al. 2017]

Qian Liang, *et al*. Nature Physics (2024) non-Abelian gauge fields Ozawa and Price

nonlinear Schrödinger dynamics are *classical* – can we go stronger?

Rydberg synthetic dimensions

Hazzard & Gadway, Physics Today (2023)

- start with strong, stable, long-ranged interactions + many internal states
- connect states with coherent microwaves
- entanglement/correlations due to dipole-dipole interactions

C. Chen, et al. Nature 616, 691–695 (2023)

- start with strong, stable, long-ranged interactions + many internal states
- connect states with coherent microwaves
- entanglement/correlations due to dipole-dipole interactions

From S. Hogan <u>EPJ Techniques and Instrumentation</u> **3**, 2 (2016)

- start with strong, stable, long-ranged interactions + many internal states
- connect states with coherent microwaves
- entanglement/correlations due to dipole-dipole interac

Rydberg arrays of a few (2-7) atoms in the strongly-interacting regime

Rydberg synthetic lattices in tweezer arrays

Rydberg synthetic lattices in tweezer arrays

microwave-controlled dynamics in the synthetic space

current limitation: imperfect Rydberg excitation

 \rightarrow start with few-body studies (1-6 atoms)

see also work from Killian group:

Lu. et al. PRA 109, 032801 (2024)

S.K. Kanungo, et al. Nat Commun 13, 972 (2022)

& Haroche group:

A. Signoles, et al. Nat Phys. 10, 715 (2014)

T. Chen, C. Huang, et al. PRL (2024)

T. Chen, C. Huang, et al. PRL (2024)

T. Chen*, C. Huang*, et al. Nat. Comm.(2024)

Rydberg synthetic lattices – **interactions**

2D Hofstadter models and more

Aidelsburger, et al (2013)

toy examples from last year or so

Gauge fields, strings, and scrambling T. Chen*, C. Huang*, et al. Nat Comm. (2024) Interactions and all-flat-bands • T. Chen*, C. Huang*, et al. Nat Phys (2025) Interacting quantum walks and engineered interactions T. Chen, et al. PRL (2024) Topological pumping of dipolar bound atoms C. Huang, T. Chen, et al. (in prep) Interaction-enabled topological pumping C. Huang, T. Chen, *et al.* (in prep) Localization by disordered potentials and disordered interactions • C. Huang, *et al*. (in prep) Dissipation engineering in interacting Rydberg arrays • T. Chen, *et al*. (in prep)

flat-band lattices + interactions

- **Dissipation engineering in interacting Rydberg arrays** T. Chen, *et al.* (in prep)

flat-band lattices + interactions Interaction Induced Delocalization for Two Particles in a Periodic Potential

 ϕ

íγ

Julien Vidal, Benoît Douçot, Rémy Mosseri, and Patrick Butaud Phys. Rev. Lett. **85**, 3906 – Published 30 October 2000

 ϕ

e

 ϕ

е

- Gauge fields, strings, and scrambling

 T. Chen*, C. Huang*, et al. Nat Comm. (2024)

 Interactions and all-flat-bands

 T. Chen*, C. Huang*, et al. Nat Phys (2025)

 Interacting quantum walks and engineered interactions

 T. Chen, et al. PRL (2024)

 Topological pumping of dipolar bound atoms

 C. Huang, T. Chen, et al. (in prep)

 Interaction-enabled topological pumping

 C. Huang, T. Chen, et al. (in prep)

 Localization by disordered potentials and disordered interactions

 C. Huang, et al. (in prep)

 Dissipation engineering in interacting Rydberg arrays
 - T. Chen, et al. (in prep)

flat-band lattices + interactions

Interaction Induced Delocalization for Two Particles in a Periodic Potential

- Gauge fields, strings, and scrambling T. Chen*, C. Huang*, et al. Nat Comm. (2024)
- Interactions and all-flat-bands
- T. Chen*, C. Huang*, et al. Nat Phys (2025)
- Interacting quantum walks and engineered interactions T. Chen, et al. PRL (2024)
- Topological pumping of dipolar bound atoms
 C. Huang, T. Chen, *et al.* (in prep)
- Interaction-enabled topological pumping
 C. Huang, T. Chen, *et al.* (in prep)
- Localization by disordered potentials and disordered inte C. Huang, *et al.* (in prep)
- **Dissipation engineering in interacting Rydberg arrays** T. Chen, *et al.* (in prep)

flat-band lattices + interactions

Interaction Induced Delocalization for Two Particles in a Periodic Potential

Julien Vidal, Benoît Douçot, Rémy Mosseri, and Patrick Butaud Phys. Rev. Lett. **85**, 3906 – Published 30 October 2000

- Gauge fields, strings, and scrambling

 Chen*, C. Huang*, et al. Nat Comm. (2024)

 Interactions and all-flat-bands

 Chen*, C. Huang*, arXiv:2404.00737 (accepted to Nate Interacting quantum walks and engineered interaction.
 Chen, et al. PRL (2024)

 Topological pumping of dipolar bound atoms

 Huang, T. Chen, et al. (in prep)

 Interaction-enabled topological pumping

 Huang, T. Chen, et al. (in prep)

 Localization by disordered potentials and disordered C. Huang, et al. (in prep)
- **Dissipation engineering in interacting Rydberg arrays** T. Chen, *et al.* (in prep)

want to explore interacting topological systems – let's start simple, working in 1D

$$Q = \frac{e}{\pi} \int_{A} dX_1 dX_2 \sum_{\beta} \sum_{\alpha \in m} \Im \frac{\partial S_{\alpha\beta}^{\star}}{\partial X_1} \frac{S_{\alpha\beta}}{\partial X_2}$$

- D. Thouless et al, Phys. Rev. Lett. 49, 405 (1982)
- D. Thouless Phys. Rev. B 27, 6083 (1983)

_____Ω₁ (a.u.)

φ (2π)

 2π

ρ

 $k_{_{\times}}$ ($\pi/d_{_{|}}$)

(a.u.)

IC

0

0

R. Citro & M. Aidelsburger, Nat. Rev. Phys. 5, 87 (2023)

 $J_{1} - J_{2}$

Ω, (a.u.)

ω=0

"quantum pumps": quantized charge pumping is related to the topology of lattice bands

Lohse, et al. Nature Physics (2016)

interacting topological pumps

topological pumping with dipolar Rydberg atoms

see also work from Deiglmayr group arXiv: 2406.08551

C. Huang, T. Chen, et al. (in prep)

experimental pumping dynamics

see also work from Deiglmayr group arXiv: 2406.08551

C. Huang, T. Chen, *et al. (in prep)* experiment

0

atoms pump while remaining bound together

influence of interactions

what's the mechanism?

C. Huang, T. Chen, et al. (in prep)

 $\sqrt{2}$ J

 $\Lambda_{\mathbf{V}}$

 \mathbf{V}

 $\frac{|01\rangle - |10\rangle}{\sqrt{2}}$

Two main effects:

- positive interactions improve projection onto single band
- interactions restrict transport to within a basis of bound pairs
 (and the pumping path in this bound-pair basis prevents spreading)

 $|j,j\rangle$

motivating experiments by Tilman Esslinger group

Fermions in superlattice implementation (T. Esslinger group) -- K. Viebahn et al, Phys. Rev. X 14, 021049 (2024)

+ lots of motivating theory work

Yan & Zhou, PRL **120**, 235302 (2018) Lin, Ke, and Lee, PRA 101, 023620 (2020) Kuno & Hatsugai, PRR **2**, 042024(R) (2020) Bertok, Heidrich-Meisner, and Aligia, PRB 106, 045141 (2022) + more

interaction-induced topological pumping of dipolar pairs

C. Huang, T. Chen, et al. (in prep)

cyclic driving in the effective pair-state Rice-Mele model

because our synthetic lattice is biased away from dc, we can separately address processes that form and break bound states

interaction-induced topological pumping of dipolar pairs

C. Huang, T. Chen, et al. (in prep)

Pair basis: $H_{\text{RM}}(t) = -\sum_{i} [J(t) + (-1)^{i} \delta(t)] (\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h. c.}) + \Delta(t) \sum_{i} (-1)^{i} \hat{c}_{i}^{\dagger} \hat{c}_{i}$

experimental pumping and adiabaticity

C. Huang, T. Chen, et al. (in prep)

- Check adiabaticity slower is better
- Smaller ω is limited by our release time window (~ 5 μ s)
- Solid lines include contributions from single atoms (SPAM)

interaction-dependence and robustness to perturbations

C. Huang, T. Chen, et al. (in prep)

 $\Delta(t) = \Delta_c - V + \Delta_0 \cos \omega t$

J/h = 0.3 MHz, fix Δ_c/J = 10, scan V; Δ₀/J = 4, δ_0 /J = 1, ω /2π = 0.3 MHz

Vary J(t) form independently for two tones to generate irregular driving path J/h = 0.3 MHz, $\Delta_c/J = 10$, V = Δ_c ; $\Delta_0/J = 4$, $\delta_0/J = 1$, $\omega/2\pi = 0.3$ MHz

Rydberg state synthetic dimensions

new playground for exploring strong interactions in highly controllable lattices

Rydberg state synthetic dimensions

new playground for exploring strong interactions in highly controllable lattices

next steps

• expand to bigger lattices in internal space – 100s of states, 2D/3D lattices

Rydberg state synthetic dimensions

new playground for exploring strong interactions in highly controllable lattices

next steps

- expand to bigger lattices in internal space 100s of states, 2D/3D lattices
- expand to larger atom arrays 100s of atoms

what is the ground state / what is the dynamics of this kind of system?

thanks for your attention! any questions?

Chenxi Huang

Dr. Jackson Dr. Sai Rishi Lohar Ang'ong'a Paladugu (alum, Tubingen)

Shraddha Agrawal

Penn State team

Dr. Qian Liang Matthew Krebs Ethan Springhorn Ruiyu Li Jungi Lee

collaborations w/ Brian DeMarco & Jake Covey

Group alums

Dr Fangzhao Alex An – AOSense Dr Eric Meier – Los Alamos Dr Jackson Ang'ong'a – Tübingen University Dr Michael Highman – Toptica Photonics + Yaashnaa Singhal, Hannah Manetsch, Ritika Anandwade, Samantha Lapp, Michael Castle, & other former UGs

Theory collaborators:

Kaden Hazzard, Hannah Price, Tomoki Ozawa, Marcos Rigol, and many more