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Introduction
• SSH & eSSH model
• Winding Number
• Lindblad Master Equation & EOD



SSH model

The SSH model describes a chain with staggered next-neighbour hoppings, defining 
a set of connected dimers

The Hamiltonian is quadratic in the fermionic operators and contains hopping 
terms only:

𝐻𝑆𝑆𝐻 =෍

𝑖

𝑣𝑐𝐴,𝑗
+ 𝑐𝐵,𝑗 + 𝑤𝑐𝐵,𝑗

+ 𝑐𝐴,𝑗+1 + ℎ. 𝑐.
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SSH model

The SSH spectrum is composed by two bands, symmetric around E=0. For w>v the
spectrum contains two zero-energy modes.
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eSSH model

The SSH model can be extended (eSSH) by including longer range hopping at fixed dimer distance 𝑛. 
Accordingly, two families of eSSH can be defined:

𝐻𝑛
𝐴−𝐵 = 𝐻𝑆𝑆𝐻 + 𝑧෍

𝑗

𝑐𝐴,𝑗
+ 𝑐𝐵,𝑗+𝑛 + ℎ. 𝑐.

𝐻𝑛
𝐵−𝐴 = 𝐻𝑆𝑆𝐻 + 𝑧෍

𝑗

𝑐𝐵,𝑗
+ 𝑐𝐴,𝑗+𝑛 + ℎ. 𝑐.

By fixing 𝑛 = 2, the two families can be represented as:

𝑧 𝑧

𝐻2
𝐴−𝐵 𝐻2

𝐵−𝐴



eSSH model

As for the SSH, the eSSH spectrum is composed by two zero-symmetric bands. However, the number of 
topological phases is greater, as the number of edge states can range from 0 to 2𝑛.

𝐻2
𝐴−𝐵 𝑣 = Τ1 2 𝑧 = Τ3 2
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𝐵−𝐴 𝑣 = 1 + Τ𝑤 3 𝑧 = 1 − Τ𝑤 3
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eSSH model
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To count the edge states, firstly PBC are imposed and 𝐻 is expressed in momentum space:

Since eSSH possesses chiral symmetry, Ԧ𝛾𝑘 lies on the 𝑥 − 𝑦 plane. Furthermore, being a closed curve,
a winding number Ω can be defined

Winding Number

Ω =
1

2𝜋
ර
𝑘

𝛾𝑥𝑑𝑦 − 𝛾𝑦𝑑𝑥

| |𝛾 2

𝑐𝑋,𝑘 =
1

𝐿
෍

𝑗

𝑒𝑖𝑘𝑗𝑐𝑋,𝑗 → 𝐻 =෍

𝑘

𝑐𝐴,𝑘
+ , 𝑐𝐵,𝑘

+ ℎ𝑘
𝑐𝐴,𝑘
𝑐𝐵,𝑘

ℎ𝑘 = Ԧ𝛾𝑘 ⋅ Ԧ𝜎

Ω = 0 Ω = 1 Ω = −2



Then, thanks to the bulk-boundary correspondence, |Ω| dictates the pairs of edge states, while its 
sign indicates the site (𝐴 or 𝐵) of maximum localization:

▪ If Ω > 0 then the left edge states lie on the first |Ω| sites associated to 𝐴

▪ If Ω < 0 then the left edge states lie on the first |Ω| sites associated to 𝐵

2Let’s see 𝐻𝐴−𝐵 as an example:

Winding Number

2𝐻
𝐴−𝐵 𝑣 = 0

𝛾𝑦

𝛾𝑥



Winding Number limitations

The winding number is a useful theoretical tool that allows to probe the topological phases of the
system. To calculate it, the following conditions should be satisfied:

▪ Complete knowledge of Ԧ𝛾𝑘

▪ Thermodynamical limit

▪ 𝐻 possesses chiral symmetry

In a realistic framework, these requirements may not be met.

How to bypass these limitations?

By employing the even-odd differential occupancy (EOD)!



Lindblad Master Equation

If a system 𝑆 can exchange particles with an external reservoir, it will reach a non-equilibrium steady
state (NESS).

In the hypothesis of markovianity, the state 𝜌 associated to 𝑆 is governed by the Lindblad Master
Equation (LME):

ሶ𝜌 = −𝑖 𝐻, 𝜌 + ℒ 𝜌

The NESS is then defined as the state satisfying ሶ𝜌 = 0. Here, we consider external reservoir injecting
particles at the left and extracting them at the right side.

𝐿𝑋,𝑖 = 𝑔𝑐𝑋,𝑖
+ 𝐿𝑋,𝑖 = 𝑔𝑐𝑋,𝑖



Using the state 𝜌, it is possible to define the EOD:

𝜈 =෍

𝑖

𝑛𝐴,𝑖 − 𝑛𝐵,𝑖

with 𝑛𝑋,𝑖 being the average occupation. At the NESS, the EOD is a measure of imbalance of occupancy
between the A and B sites, but it can also be used to probe the number of edge states.

Even-odd differential occupancy
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Even-odd differential occupancy

1

1

1 R.K.M. and A.K.G. 2023 J. Phys.:
Condens. Matter 35 335401

2𝐻
𝐴−𝐵 ⇒

2𝐻
𝐵−𝐴 ⇒



Even-odd differential occupancy

1

1 R.K.M. and A.K.G. 2023 J. Phys.:
Condens. Matter 35 335401

2

Considering the eSSH with 𝑛 = 2, 𝜈 ∼ Ω with only 100 dimers!

1

𝐻𝐴−𝐵 ⇒

2𝐻
𝐵−𝐴 ⇒



Disordered eSSH
• Definition of disorder
• Computational steps
• Numerical Results
• Discussion of Results



▪ Type I: local uncorrelated perturbations to hoppings

▪ Type II: local correlated perturbations to hopping

▪ Type III: constant chemical potential added to a random subset of dimers

Type I and II disorder preserve chiral symmetry, while Type III does not. 

This means that for the first two the EOD is quantized, while for the third one it doesn’t.

Nonetheless, in the latter case it has been proven useful to extract information about the localization nature 
of the single-particle states.

Definition of disorder

We tested the resilience of edge states against 3 types of disorder, modeled as a random perturbation:



Numerical Results – Type I 𝑯𝟐
𝑨−𝑩

𝑊 = 0.3 𝑊 = 0.6 𝑊 = 0.3 𝑊 = 0.6

The results were produced by considering 𝒩 = 400 different disorder configurations. Calculated
quantities were average ҧ𝜈 standard deviation 𝜎ഥ𝜈 and area associated to each topological phase 𝒜𝜈.



Numerical Results – Type II 𝑯𝟐
𝑩−𝑨

𝑊 = 0.6 𝑊 = 1.2 𝑊 = 0.6 𝑊 = 1.2

The results were produced by considering 𝒩 = 400 different disorder configurations. Calculated
quantities were average ҧ𝜈 standard deviation 𝜎ഥ𝜈 and area associated to each topological phase 𝒜𝜈.
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Conclusions

For chiral disorder (Type I & II):

1. Topological phases are resilient against disorder, and trivial regions can even become topological

2. 𝜎𝑣 ∼ 0 everywhere except for phase boundaries

3. If 𝑅1 and 𝑅2 are two adjacent topological phases, then 𝜈 𝑅1 − 𝜈 𝑅2 = 1

4. Topological phases are destroyed in a decreasing order of 𝜈

For non-chiral disorder:

1. For low 𝑊 and far from the boundaries 𝜎𝑣 ∼ 0

2. For high 𝑊 EOD is no more quantized but it can be used to find whether disorder-induced 
localization happens preferentially on A or B sites.



Long Range Kitaev 
Chain



Long Range Kitaev Chain - Model

The LRK chain is a lattice model containing next-neighbour hoppings, chemical potential and long-
range pairing terms:

𝐻𝐿𝑅𝐾 = −𝒘෍

𝒋<𝑳

𝒄𝒋
+𝒄𝒋+𝟏 + 𝒄𝒋+𝟏

+ 𝒄𝒋 − 𝝁෍

𝒋≤𝑳

𝒄𝒋
+𝒄𝒋 −

𝚫

𝟐
෍

𝒋<𝑳

෍

𝒓≤𝑳−𝒋

𝟏

𝒓𝜶
𝒄𝒋
+𝒄𝒋+𝒓

+ + 𝒄𝒋+𝒓𝒄𝒋

For 𝜶 >
𝟑

𝟐
,  Ω is integer and the phase diagram is: 

• 𝜇 < 1 topological phase 
• 𝜇 > 1 trivial phase

For 𝜶 <
𝟑

𝟐
, Ω is not quantized and for 𝜇 < 1, an edge state with power-law 

decay and non-zero energy appears. 
As for eSSH, impurity can alter LRK structure. In this work, it has been 
modelled as a perturbation on chemical potential (dLRK). The edge states are 
then probed through current and correlation measurements.



Long Range Kitaev Chain - Setup

The dLRK topology was studied through the N-S-N geometry:

Thermal 
Reservoir

Metallic Leads

dLRK



Long Range Kitaev Chain – Numerical Results

The numerical results show that, as for the eSSH, the topological
phases are resilient to small amount of disorder. If 𝐼 is the
average lead-dLRK current and 𝐶𝐿,𝑅 the lead-lead correlation:

1. 𝐼 ≠ 0 and 𝐶𝐿,𝑅 has a peak when 𝑉 > 𝜖𝑚𝑖𝑛

2. In the topological phase 𝐼 ≫ 1 for 𝑉 ∼ 𝜖𝑒𝑑𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 and:

i. For exponentially decaying edge states 𝐶𝐿,𝑅 ≪ 1

ii. For power-law decaying edge states 𝐶𝐿,𝑅 has a peak at
𝑉 ∼ 𝜖𝑒𝑑𝑔𝑒 𝑠𝑡𝑎𝑡𝑒

A

A

D

D







SSH model

The SSH spectrum is composed by two bands, symmetric around E=0. For w>v the
spectrum contains two zero-energy modes, exponentially localized at the two edges.

Trivial Phase Topological Phase



Definition of disorder

To test the resilience of edge states against disorder, it was modelled as random local perturbations on 𝐻.
Both chiral and non-chiral disorder were considered; the first one is taken as a local offset on v, w and z:

𝑣𝑖 = 𝑣 + 𝜖1𝑖 𝑤𝑖 = 𝑤 + 𝜖2𝑖 𝑧𝑖 = 𝑧 + 𝜖3𝑖

Two types of chiral disorder were chosen:

▪ Type I (uncorrelated): {𝜖𝑗𝑖} comes from a uniform distribution such that 𝜖 = 0 and 𝜎𝜖 = 𝑊

▪ Type II (correlated): {𝜖𝑗𝑖} is chosen in two different ways:

▪ 𝑛 = 2 ⇒ 𝜖2𝑖 = 0, while 𝜖3𝑖 = −𝜖1𝑖 are drawn from a binomial distribution having 𝜖 ∈ {0,𝑊} with 50% chance

▪ 𝑛 = 3 ⇒ 𝜖1𝑖 = 0, while 𝜖3𝑖 = −𝜖2𝑖 are drawn from a binomial distribution having 𝜖 ∈ {0,𝑊} with 50% chance

Conversely, the non-chiral disorder is chosen as chemical potential term added to a random subset of dimers
with 50% chance (Type III):

𝐻𝑊 = 𝑊෍

𝑖∈𝑅

𝑐𝐴,𝑖
+ 𝑐𝐴,𝑖 + 𝑐𝐵,𝑖

+ 𝑐𝐵,𝑖



Even-odd differential occupancy

Starting from 𝜌, it is possible to define the EOD:

𝜈 = 𝑇𝑟 Γ𝜌 =෍

𝑖

𝐶𝐴,𝑖;𝐴,𝑖 − 𝐶𝐵,𝑖;𝐵,𝑖

with 𝐶𝑋,𝑖;𝑌,𝑗 = 𝑇𝑟(𝑐𝑋,𝑖
+ 𝑐𝑌,𝑗𝜌) being the correlation matrix. Since 𝐻 is quadratic and 𝐿𝑋,𝑖 are linear, 𝐶

admits a closed set of differential equations, defined starting from LME:

ሶ𝐶 = 𝑖 ℋ𝑇, 𝐶 −
1

2
𝒢 + ℛ, 𝐶 + 𝒢

where ℋ is the matrix of coefficients of 𝐻, while 𝒢 and ℛ are diagonal matrices encoding the
interactions with the jump operators.

Since at the NESS ሶ𝜌 = 0, then ሶ𝐶 = 0; consequently, the differential equation reduces to a system of
linear equations.



Numerical Results – Type I 𝑯𝟐
𝑩−𝑨

𝑊 = 0.3 𝑊 = 0.6 𝑊 = 0.3 𝑊 = 0.6

The results were produced by considering 𝒩 = 400 different disorder configurations. Calculated
quantities were average ҧ𝜈 standard deviation 𝜎ഥ𝜈 and area associated to each topological phase 𝒜𝜈.



Numerical Results – Type III 𝑯𝟐
𝑩−𝑨

𝑊 = 0.5 𝑊 = 1.8 𝑊 = 0.5 𝑊 = 1.8

The results were produced by considering 𝒩 = 400 different disorder configurations. Calculated
quantities were average ҧ𝜈 standard deviation 𝜎ഥ𝜈 and area associated to each topological phase 𝒜𝜈.



𝟐Discussion of results – Type III 𝑯𝑩−𝑨 EOD quantization

Since Type III disorder violates chiral symmetry, EOD is no more quantized. This can be noticed by 
comparing Type I and Type III EOD for a single disorder configuration:

Nonetheless, for low 𝑊 topological regions survives and in fact EOD is approximately quantized. 
Conversely, for high 𝑊 disorder washes out every phase.



Discussion of results – Physical meaning of EOD

How do EOD values arise? To answer this question, let’s define the single particle EOD associated to
the Hamiltonian eigenmodes, i.e. 𝛾𝜖 = ∑𝜓𝜖,𝑗𝑐𝑗 such that 𝐻 = ∑𝜖 𝜖𝛾𝜖

+𝛾𝜖:

𝜈𝜖 =෍

𝑗

−1 𝑗+1 𝜓𝜖,𝑗
2

Then, the distribution of EOD values for chiral and non-chiral disorder looks quite different:

Finally, we numerically checked that the total EOD is well approximated by the weighted sum of 𝜈𝜖:

𝜈 ≈෍

𝜖

𝜃𝜖𝜈𝜖 with 𝜃𝜖 =෍

𝑚,𝑛

𝜓𝜖,𝑚𝐶𝑚𝑛𝜓𝜖,𝑛
∗



Discussion of results – Physical meaning of EOD

Lastly, to investigate the connection between EOD and 𝜓𝜖,𝑗 localization for Type III disorder, we first

group them by 𝜃𝜖:

▪ Higher 𝜃𝜖 ⇔ Lower right tail

▪ Lower right tail ⇔ negative (but not quantized) EOD

Finally, no edge state has been found, but states having different tails and peaks position in the chain.

From all these information, the conclusion is that EOD measures the eigenstate tendency to lie on the
A or on the B site of the chain, rather than counting the number of edge states.



Winding Number

2𝐻
𝐴−𝐵 𝑤 = 0

Specifically, |Ω| dictates the number of edge states pairs, while its sign indicates the site of maximum 
localization:

▪ If Ω > 0 then the left (right) edge states lie on the first (last) Ω sites associated to 𝐴 (𝐵)

▪ If Ω < 0 then the left (right) edge states lie on the first (last) Ω sites associated to 𝐵 (𝐴)

2Let’s see 𝐻𝐴−𝐵 as an example:

𝛾𝑦

𝛾𝑥
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