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Context and motivations
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(a) Symmetric quantum walk (b) Asymmetric quantum walk

Figure 1: Examples of discrete time quantum walk simulations. The y axes represent the probability of
being in a location on the walk (x axes). (a) is a symmetric quantum walk from using a balanced Hadamard
coin, whereas in (b) the walk is severely biased to one side due to the initial starting state. Both cases
show a substantial deviation from a classical random walk due to quantum interference e↵ects and that the
probabilities are proportional to the modulus of the state amplitudes squared.

2 Continuous Time Quantum Walks

The continuous time quantum walk has some notable contrasts with the discrete random walk which will
be described in this section, namely:

• CTQW are generally described by Markov processes;

• A CTQW evolves under a Hamiltonian which is defined with respect to a graph;

• No coin operator is required in a CTQW. The implications of this are discussed in section 2.2.

2.1 Formalism

Figure 2: An example of a graph which a quantum walk is performed on. From [36].

The formalism for the continuous time quantum walk leads on fairly straightforwardly from its classical
counterpart, the continuous time classical walk. This is a Markov process. A Markov process is best illustrated
with a graph as in figure 2. Suppose the graph G has a set of vertices N indexed by integers a = 1, 2...N .
The vertices may be connected to other vertices by an edge. If we let � denote the jumping rate per unit
time between vertices and impose the condition that the walk may only travel between nodes connected to
an edge, the random walk can be described by a stochastic generator matrix M . Its matrix elements are
defined by:
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directly map to graphs with a high degree of connectivity,
with different coupling strengths for nearest and non-
nearest neighboring waveguides.
For two indistinguishable input photons in waveguides q

and r, the probability of detecting one photon in output
waveguide q0, coincident with the other photon in wave-
guide r0 is given by the correlation function [35]:

Γðq;rÞ
q0;r0 ¼

1

1þ δq0;r0
jUq0;qUr0;r þUq0;rUr0;qj2: (2)

withU ¼ expð−iHzÞ as the evolution unitary of the system
and z as the evolution length.
A sufficient criterion for nonclassical behavior is a

violation of the inequality [5,19],

Vq;r ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γcl
q;qΓcl

r;r

q
− Γcl

q;r < 0; (3)

with Γcl here referring to intensity correlations between
classical light beams. This inequality imposes a limit to the
magnitude of the on-diagonal terms in the correlation
matrix in comparison to the associated off-diagonal ele-
ments. Its violation in the quantum regime is a sign of
photon bunching.
The waveguides of the QW network in this work are

labeled as in Fig. 1(a), where waveguides that have first
order coupling in the horizontal (vertical) plane are denoted
with a prefix X (Y). The central waveguide has first order
coupling in both the horizontal and vertical plane and is
labeled as C. For a single particle walk the size of the
Hilbert space coincides with the size of the physical
network structure. For a two-particle input the Hilbert
space grows larger. This two-particle configuration space
can be interpreted as the Hilbert space of a single-particle
QW on a more complex graph with a probability distribu-
tion equalling the original two-particle correlation function.
The on site potentials and hopping amplitudes in this
simulated single particle graph can be deduced from
considering the Heisenberg equation of motion
ðd=dzÞÂðzÞ ¼ ½Ĥ; Â& for the Hamiltonian of the physical

network Eq. (1) with single particle input Â ¼ a†q and two
particle input Â ¼ a†qa†r as described in [5]. The single-
particle graph structure corresponding to two-particles on
the swiss cross structure is shown in Fig. 2 [36].
We measured correlation matrices for two different input

states, one corresponding to injection of the twin photons in
waveguides located on the same plane (waveguides X1 and
X4) and also in waveguides located on orthogonal planes
(X1 and Y1) [36]. By varying the relative temporal delay
between the two input photons, their degree of indistin-
guishability was tuned. The nonclassical nature of the
correlations measured can be quantified by the violations of
inequality (3).
In the correlation matrices summarized in Fig. 3 one can

identify four regions, two for correlated detection events
betweenoutputwaveguides in the sameplane (ΓX1−X4;X1−X4;
ΓY1−Y4;Y1−Y4) and two for events between waveguides in
different planes (ΓX1−X4;Y1−Y4; ΓY1−Y4;X1−X4). From these it
can be seen that the distinct features that appear for indis-
tinguishable photons and the violations of the classical limit
spread throughout the 2D network. The observed behavior
therefore cannot be attributed to independent, 1D, single
photon QWs, but rather is characteristic of a single 2D QW

FIG. 1 (color online). (a) Schematic of the 2D evanescently
coupled waveguide array. The coupling constant Cð1Þ is for
adjacent waveguides and the second order coupling is denoted as
Cð2Þ. (b) Schematic of the interface section of our waveguide
circuit, showing the input waveguides fanning from a planar
configuration to the 2D, swiss cross configuration.

FIG. 2 (color online). Graph structure simulated with a two-
photon input state in the swiss cross structure shown in Fig. 1(a).
Each of the 45 vertices corresponds to a two-particle state, with
different degrees of connectivity (up to degree 8), and there are
126 links between different vertices corresponding to allowed
transitions between two-particle states. Red lines and red vertices
correspond to coupling strengths of C and potentials of β,
respectively, so they coincide with the ones in the swiss cross
structure. For vertices corresponding to a state with two particles
in the same waveguide, the on site potential and the coupling are
enlarged by a factor of 2 and

ffiffiffi
2

p
respectively, due to normal-

isation of the two-particle wavefunction. We mark these vertices
and links in green. The two yellow vertices represent the two
different two-photon input states in the experiment (X1 − X4 and
X1–Y1). Two different complete connecting paths (jX1X1i to
jX4X4i and jX1X1i to jY1Y1i) are labeled as examples.
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Adjacency matrix: A

Ajk = {1  if ( j, k) ∈ E(G)
0  otherwise

Graph G(V, E)

|ψ(t)⟩ = e−iHt |ψ0⟩

p(v, t) = |⟨v |ψ(t)⟩ |2 = |⟨v |e−iHt |ψ0⟩ |2

Hyk = − JykAyk

1
2

3

4 5

H =

0 J12 0 0 0
J12 0 J23 0 0
0 J23 0 J34 J35

0 0 J34 0 J45

0 0 J35 J45 0

Network

Quantum walks on graphs
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The task:

|ψ0⟩ QW evolution |⟨v |ψ(t)⟩ |2

The QW evolution:
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The task:

|ψ0⟩ QW evolution |⟨v |ψ(t)⟩ |2

The QW evolution:

Our aim:

|ψ0⟩ QW evolution??
|⟨v |ψ(t)⟩ |2

H = ?

non-linear mapping between the  and the probability distributionsH
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How?

How do we do this?
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Jyk = 0,1

|ψ0⟩ QW evolution??
|⟨v |ψ(t)⟩ |2

H = ?
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Jyk = 0,1

Search problem 
Genetic algorithm

Determine the topology, with fixed  valuesJ
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Task1: Identifying topologies

The problem: Given an undirected graph of  sites, retrieve the adjacency 
matrix of the graph having access only to the initial state of the walker and 
probability distributions  over the nodes at times .

N

p(v, tk) tk

The coupling values are fixed Jyk = 0,1
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Task1: Identifying topologies

The problem: Given an undirected graph of  sites, retrieve the adjacency 
matrix of the graph having access only to the initial state of the walker and 
probability distributions  over the nodes at times .

N

p(v, tk) tk

The coupling values are fixed Jyk = 0,1

Adjacency matrix: A

Hamiltonian H

H =

0 J12 J13 J14 J15

J12 0 J23 J24 J25

J13 J23 0 J34 J35

J14 J24 J34 0 J45

J15 J25 J35 J45 0

Real 
Symmetric
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Task1: Identifying topologies

The problem: Given an undirected graph of  sites, retrieve the adjacency 
matrix of the graph having access only to the initial state of the walker and 
probability distributions  over the nodes at times .

N

p(v, tk) tk

The coupling values are fixed Jyk = 0,1

Adjacency matrix: A

Hamiltonian H

Λ = [J12, J13, …J23, J24…, J45] = [0,0,1,1,…,1,0]

Determining the topology is equivalent to retrieving a binary string  of length S nc = N(N − 1)/2

H =

0 J12 J13 J14 J15

J12 0 J23 J24 J25

J13 J23 0 J34 J35

J14 J24 J34 0 J45

J15 J25 J35 J45 0

Real 
Symmetric
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Task1: Identifying topologies

The coupling values are fixed Jyk = 0,1

Search problem

Λ = [J12, J13, …J23, J24…] = [0,0,1,1,…,1,0]

The problem: Given an undirected graph of  sites, retrieve the adjacency 
matrix of the graph having access only to the initial state of the walker and 
probability distributions  over the nodes at times .

N

p(v, tk) tk
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Task1: Identifying topologies

The coupling values are fixed Jyk = 0,1

Search problem

Λ = [J12, J13, …J23, J24…] = [0,0,1,1,…,1,0]

Genetic algorithm

The problem: Given an undirected graph of  sites, retrieve the adjacency 
matrix of the graph having access only to the initial state of the walker and 
probability distributions  over the nodes at times .

N

p(v, tk) tk
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The genetic algorithm

Σ = [J12, J13, …J23, J24…] (Jjk = 0,1)

S = [J1, J2, J3…Jnc−1, Jnc
] (Jk = 0,1)

GAs inspired by biological evolution to find optimal solutions to problems. 
They mimic the way species evolve over generations to adapt to their environments
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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I. GENETIC ALGORITHM

The algorithm begins with an initial population initial-
ized by generating np random binary arrays ⇤i of size nc,
containing the couplings Jxy, which in this representa-
tion correspond to the genes of each individual. These np

chromosomes correspond to the zeroth generation. While
the number of generations is lower than ng, we proceed as
follows: We evaluate the score Si of each string ⇤i using
the Fitness function described in details in the next sec-
tion. The best fitness score, corresponding to the lowest
value, and the relative couplings are stored. If the score
is equal to zero, the optimal solution has been found,
the algorithm stops and returns it. If the condition is
not met, the algorithm continues by selecting the fittest
pe ·np chromosomes ⇤i and place them in a hall of fame,
to be cloned in the following generation. Since the pop-
ulation size has to stay constant, we need to create the
remaining np(1� pe) individuals which will populate the
next generation together with those cloned from the hall
of fame. In order to do so we select the best parents from
the whole population (including the hall of fame). This is
achieved with the Tournament selection function, which
randomly selects k individuals at a time and returns the
best among them (lowest fitness score). The random se-
lection of the k competitors ensures that the chosen indi-
viduals are not necessarily the best in the population. In
this way, genetic diversity is ensured to mitigate the pres-
ence of local minima. Once the parents are selected, they
are mixed through the Crossover function, which returns
two children which, with probability pc, are composed by
a mixture of the parents chromosomes. To further ensure
genetic diversity, the genes of the children can undergo
mutations with mutation probability pm. When a muta-
tion happens, the gene is flipped. The generated children
together with the hall of fame constitute the new gener-
ation. The algorithm repeats until either a chromosome
with fitness score equal to zero is found, or the maximum
number of generations is reached. The pseudocode of the
algorithm reported in Algorithm 1.

The values of the hyperparameters are reported in Ta-
ble S1:

⇤ ilaria.gianani@uniroma3.it

Algorithm 1 Genetic Algorithm
1: gen 0
2: Randomly generate np binary arrays {⇤i}
3: Pgen  {⇤i} . Initialize population
4: while gen < ng do
5: for i = 0! np � 1 do
6: Si= Fitness(⇤i,⇡ ({tk},⇤QW)) . Evaluate scores
7: end for
8: best (Min(S),⇤Min(S))
9: if best[0] = 0 then

10: return best
11: end if
12: for i = 0! penp � 1 do
13: HOFi  (⇤i, Si) sorted by scores . Hall of fame
14: end for
15: Insert HOF into Pgen+1

16: for j = 0! np(1� pe)/2� 1 do
17: ⇤j

1,⇤
j
2  Tournament(Pgen, S) . Select parents

18: Add Crossover(⇤j
1,⇤

j
2) to children . Children

19: end for
20: for i = 0! np(1� pe)� 1 do
21: Apply Mutation(childreni) . Mutation
22: end for
23: Insert children in Pgen+1

24: gen gen+ 1
25: end while

Parameter Value

ng Maximum number of generations 100

np Population size 2 · n2
c

pe Elitist probability 0.02

k Tournament competitors 6

pc Crossover probability 0.85

pm Mutation probability 0.05

TABLE S1. Genetic algorithm parameters

II. GENETIC OPERATIONS

We define the genetic functions which are used in the
algorithm:
Fitness evaluation. The algorithm evaluates the fitness
of each individual in the population ⇤i by evolving the
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Genetic operations

S = [J1, J2, J3…Jnc−1, Jnc
] (Jk = 0,1)

1. Generate the  generation of chromosomes 0th {Λi}np

Σ = [J12, J13, …J23, J24…] (Jjk = 0,1) Chromosome, made of genes 

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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distributions. 
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Genetic operations

3. Hall of fame 
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0 1 0 … 0 1

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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4. Tournament selection 

During each tournament,  individuals at random are selected among the whole 
population. The fittest one among the  (e.g. that with the smallest KLD) is chosen 
as a parent.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
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Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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4. Tournament selection 

During each tournament,  individuals at random are selected among the whole 
population. The fittest one among the  (e.g. that with the smallest KLD) is chosen 
as a parent.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X
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Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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5. Crossover to create two children, with pc

1 0 1 0 1 0

0 1 1 1 1 1

Genetic operations

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.

AVS Quantum Science ARTICLE pubs.aip.org/aip/aqs

AVS Quantum Sci. 6, 014412 (2024); doi: 10.1116/5.0190168 6, 014412-2

Published under an exclusive license by AIP Publishing

 07 June 2024 09:58:25



16/01/25                                                                           Claudia Benedetti                                                                       QSQW2025

5. Crossover to create two children, with pc

1 0 1 0 1 0

0 1 1 1 1 1

Genetic operations

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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5. Crossover to create two children, with pc

1 0 1 0 1 0

0 1 1 1 1 1

0 1 1 0 1 0

1 0 1 1 1 1

Genetic operations

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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5. Crossover to create two children, with pc

1 0 1 0 1 0

0 1 1 1 1 1

0 1 1 0 1 0

1 0 1 1 1 1

0 1 1 0 1 0

0 1 1 1 1 0

Genetic operations

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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6. Mutation, with probability pm

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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5. Crossover to create two children, with pc
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Genetic operations

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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6. Mutation, with probability pm

connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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7. Repeat until target is found
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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connected by edges. The configuration of the connections between the
vertices defines the topology of the graph, which is mathematically
described by the adjacency matrix. The adjacency matrix elements Axy

are either 0 or 1, depending on whether an edge is absent or present
between nodes x and y. We can associate the topology of the graph
with the structure underlying a quantum walk. From a physical point
of view, the nodes of the graph are the positions the walker can occupy,
while the edges represent the couplings between different vertices. We
consider a CTQW with zero on-site energies, defined by the couplings
KQW ¼ fJxyg between two nodes of the network x and y, such that its
Hamiltonian is

HðKQWÞ ¼
X

xy

Jxyjxihyj: (1)

The couplings can be written as Jxy ¼ cxyAxy, where cxy are the jump-
ing rates of the walk, and Axy are the elements of the adjacency matrix.
It is a common practice to assume a constant jumping rate for CTQW
cxy ¼ c 8 x; y, such that the rate c just becomes a multiplicative factor
that rescales times (see, for example, the seminal paper on CTQW in
Ref. 24). If we assume that c¼ 1, i.e., we consider a dimensionless time
t, then the couplings Jxy can take only two values: Jxy¼ 0 if the link
between two nodes is off, or Jxy¼ 1 if the link is on so that each edge is
bound to have the same strength. The Hamiltonian, thus, coincides
with the adjacency matrix of the network, hence, determining its
parameters amounts to determine the network’s topology. The evolu-
tion of a walker in the initial state jw0i is described by the unitary
operator e$iHt . The probability of occupying a site x at a time t is then

pxðt;KQWÞ ¼ jhxje$iHðKQWÞt jw0ij
2: (2)

Given an undirected graph of n sites, our objective is that of retrieving
the couplings KQW ¼ fJ12;…; Jðn$1Þng, i.e., a binary string of length
nc ¼ n ðn$ 1Þ=2, having access only to the initial state of the network
and the probabilities pxðtk;KQWÞmeasured at times tk.

RESULTS
We tackle this challenge using a genetic algorithm (GA). GAs are

versatile iterative search algorithms inspired by natural selection and
have been extensively employed for quantum tasks.39–42 They rely on
the evolution of a population of individuals, each defined by a chromo-
some string and a fitness score, which breed new individuals replacing
the previous population at each iteration. By promoting the reproduc-
tion of the fittest individuals while introducing various mechanisms to
ensure enough genetic variability, GAs allow to efficiently retrieve the
optimal solution.43,44 We encode the chromosomes as binary strings Ki

of length nc so that each gene constituting the chromosome is a cou-
pling Jxy. The fitness of each individual is evaluated as follows: Ki is used
to evolve the initial state of the probe up to selected times tk, obtaining
the probability distributions pxðtk;KiÞ. For practical purposes, we con-
catenate the probabilities at different times in a single array that we call
pxðftkg;KiÞ. Using multiple times allows us to remove eventual ambi-
guities and mitigate the effects of local minima, thus improving the per-
formance of the algorithm. We then check the distance between these
probabilities and the measured ones pxðftkg;KQWÞ, e.g., by using the
Kullback–Leibler divergence. When the distance is null, Ki ¼ KQW.
The value of the distance will be the fitness score of each individual.
Thus, in our case, the more fit an individual, the smaller its fitness score.
The correct couplings will be those having a fitness score equal to 0.

The algorithm scheme is shown in Fig. 1 and operates as follows:
an initial random population of size np is generated, and its fitness is
evaluated as described above. An elitist function selects a small per-
centage pe of individuals with the best fitness scores to constitute the
hall of fame, which will be cloned in the next generation. The whole
population is then entered in a tournament, where k individuals at the
time compete to be selected for breeding the next generation. This is
achieved through a crossover strategy in which the chromosomes of
the selected parents are mixed with a probability pc. The size of the
population is kept constant through each generation so that each

FIG. 1. Conceptual scheme. Given an initial probe state jw0i and a network with unknown topology controlled by a set of experimental parameters, we aim at retrieving the
topology of the network measuring the probability distributions of the probe evolved with a CTQW. This is achieved through a genetic algorithm in which the probability distribu-
tions are employed to evaluate the fitness score, as described in the main text.
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selected pair of individuals will produce two children. In order to
ensure genetic diversity, with a small probability pm, children can
undergo mutations consisting of bit flips. The newborn children
together with the cloned hall of fame individuals become the next gen-
eration, and the algorithm continues iteratively, stopping either when
the optimal individual is found (i.e., fitness score equals to zero) or
when a maximum number of generations ng is reached. A full depic-
tion of the algorithm and the implementation of the genetic operations
is reported in the supplementary material.

The initial state of the probe as well as the evolution times at
which the probabilities are measured play a fundamental role toward
the success of the algorithm: for instance, choosing a localized state
may result in the discarding part of the network, if composed of two or
more disjoints subnetworks; evolving the state for too short a time in a
large network may preclude the state to reach the whole network.
While we do not perform a full optimization of the initial state, we
choose one that allows us to explore a large variety of different topolo-
gies and network sizes. Also, all the hyperparameters defining the algo-
rithm (population size np, elitist population pe, individuals involved in
each tournament k, crossover probability pc, mutation probability pm,
and max number of generations ng) can be optimized in accordance
with the task at hand and specifically with the network size. In our
analysis, we vary the network size to explore how the algorithm scales
with an increasing number of couplings, but for the sake of simplicity,
we have chosen to keep all hyperparameters fixed aside from the popu-
lation size np. Our results, hence, are but a lower bound to the achiev-
able performance attainable by fine-tuning for a fixed network size.

Here, we report the results obtained with a star graph, a complete
graph, and a graph with an arbitrary topology. This last network is a
simplified version of the graph in Ref. 45, describing the relations
between the characters in the novel Les Mis!erables.46 The star graph is
a network where a central node is connected to all remaining vertices,
which have no connections among each other. The complete graph is
the graph with maximum connectivity, where all vertices are con-
nected to all the other ones. Results for additional topologies (line and

circle) and further details on the generation of the Les Mis!erables
graph can be found in the supplementary material.

In order to test the algorithm, we inspect networks with nodes
from n¼ 5 to 10, thus, we search for binary strings with length
nc¼ 10–45. We measure the probability distributions at two distinct
times, t1 ¼ 0:5 and t2 ¼ 0:6. As mentioned above, all hyperpara-
meters are kept fixed (see the supplementary material), aside from the
population size np, which we scale as np ¼ 2 " n2c . This ensures a trade-
off between computation time and performance and allows us to pro-
vide a controlled comparison for the performance at different sizes.
We fix the maximum number of generations to ng¼ 100, and, for each
configuration, we run the algorithm N¼ 100 times.

We first consider the ideal case in which the probability distribu-
tions are noiseless. The results are reported in Fig. 2, which shows the
coupling values (green¼ 1, fuchsia¼ 0) obtained for each run of N for
the star (a)–(f), complete (h)–(m), and Les Mis!erables graph (o)–(t), as
well as the success rate in each instance (g), (n), and (u). Figure 2 high-
lights how most of the time when the algorithm fails it returns the
same (wrong) couplings. This effect is due to the algorithm getting
stuck in the same local minima because, for the chosen evolution
times, there are multiple configurations leading to probabilities, which
are very close to the true one. The most affected network is the com-
plete, whose success rate, for n¼ 10, drops to 31%. However, it is suffi-
cient to run the algorithm including also a third probability measured
at time t3 ¼ 1, and a success rate of 73% is recovered (see the supple-
mentary material). In Fig. 3, we report the number of generations
needed for convergence as a function of n, which predictably increases
with the number of network sites, as does the search space. These
results also highlight how there is a greater dispersion in the number
of generations required for convergence as the network size increases
and in the instances in which local minima strongly affect the algo-
rithm. Our results show a remarkable efficiency of the search algo-
rithm employed: in fact, the number of possible combinations Ki

scales with 2nc , while we are inspecting, at most, 2 " n2c " ng combina-
tions, assuming the worst-case scenario in which we run the algorithm

FIG. 2. Results without noise. Retrieved couplings for N runs of the algorithm for star (a)–(f), complete (h)–(m), and random (o)–(t) networks for varying network sizes: (a), (h),
and (o) n¼ 5; (b), (i), and (p) n¼ 6; (c), (j), and (q) n¼ 7; (d), (k), and (r) n¼ 8; (e), (l), and (s) n¼ 9; (f), (m), and (t) n¼ 10. (g), (n), and (u) Success rates as a function of
network size. Green indicates a coupling equal to 1, and fuchsia indicates a coupling equal to 0.
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Results: performances

selected pair of individuals will produce two children. In order to
ensure genetic diversity, with a small probability pm, children can
undergo mutations consisting of bit flips. The newborn children
together with the cloned hall of fame individuals become the next gen-
eration, and the algorithm continues iteratively, stopping either when
the optimal individual is found (i.e., fitness score equals to zero) or
when a maximum number of generations ng is reached. A full depic-
tion of the algorithm and the implementation of the genetic operations
is reported in the supplementary material.

The initial state of the probe as well as the evolution times at
which the probabilities are measured play a fundamental role toward
the success of the algorithm: for instance, choosing a localized state
may result in the discarding part of the network, if composed of two or
more disjoints subnetworks; evolving the state for too short a time in a
large network may preclude the state to reach the whole network.
While we do not perform a full optimization of the initial state, we
choose one that allows us to explore a large variety of different topolo-
gies and network sizes. Also, all the hyperparameters defining the algo-
rithm (population size np, elitist population pe, individuals involved in
each tournament k, crossover probability pc, mutation probability pm,
and max number of generations ng) can be optimized in accordance
with the task at hand and specifically with the network size. In our
analysis, we vary the network size to explore how the algorithm scales
with an increasing number of couplings, but for the sake of simplicity,
we have chosen to keep all hyperparameters fixed aside from the popu-
lation size np. Our results, hence, are but a lower bound to the achiev-
able performance attainable by fine-tuning for a fixed network size.

Here, we report the results obtained with a star graph, a complete
graph, and a graph with an arbitrary topology. This last network is a
simplified version of the graph in Ref. 45, describing the relations
between the characters in the novel Les Mis!erables.46 The star graph is
a network where a central node is connected to all remaining vertices,
which have no connections among each other. The complete graph is
the graph with maximum connectivity, where all vertices are con-
nected to all the other ones. Results for additional topologies (line and

circle) and further details on the generation of the Les Mis!erables
graph can be found in the supplementary material.

In order to test the algorithm, we inspect networks with nodes
from n¼ 5 to 10, thus, we search for binary strings with length
nc¼ 10–45. We measure the probability distributions at two distinct
times, t1 ¼ 0:5 and t2 ¼ 0:6. As mentioned above, all hyperpara-
meters are kept fixed (see the supplementary material), aside from the
population size np, which we scale as np ¼ 2 " n2c . This ensures a trade-
off between computation time and performance and allows us to pro-
vide a controlled comparison for the performance at different sizes.
We fix the maximum number of generations to ng¼ 100, and, for each
configuration, we run the algorithm N¼ 100 times.

We first consider the ideal case in which the probability distribu-
tions are noiseless. The results are reported in Fig. 2, which shows the
coupling values (green¼ 1, fuchsia¼ 0) obtained for each run of N for
the star (a)–(f), complete (h)–(m), and Les Mis!erables graph (o)–(t), as
well as the success rate in each instance (g), (n), and (u). Figure 2 high-
lights how most of the time when the algorithm fails it returns the
same (wrong) couplings. This effect is due to the algorithm getting
stuck in the same local minima because, for the chosen evolution
times, there are multiple configurations leading to probabilities, which
are very close to the true one. The most affected network is the com-
plete, whose success rate, for n¼ 10, drops to 31%. However, it is suffi-
cient to run the algorithm including also a third probability measured
at time t3 ¼ 1, and a success rate of 73% is recovered (see the supple-
mentary material). In Fig. 3, we report the number of generations
needed for convergence as a function of n, which predictably increases
with the number of network sites, as does the search space. These
results also highlight how there is a greater dispersion in the number
of generations required for convergence as the network size increases
and in the instances in which local minima strongly affect the algo-
rithm. Our results show a remarkable efficiency of the search algo-
rithm employed: in fact, the number of possible combinations Ki

scales with 2nc , while we are inspecting, at most, 2 " n2c " ng combina-
tions, assuming the worst-case scenario in which we run the algorithm

FIG. 2. Results without noise. Retrieved couplings for N runs of the algorithm for star (a)–(f), complete (h)–(m), and random (o)–(t) networks for varying network sizes: (a), (h),
and (o) n¼ 5; (b), (i), and (p) n¼ 6; (c), (j), and (q) n¼ 7; (d), (k), and (r) n¼ 8; (e), (l), and (s) n¼ 9; (f), (m), and (t) n¼ 10. (g), (n), and (u) Success rates as a function of
network size. Green indicates a coupling equal to 1, and fuchsia indicates a coupling equal to 0.
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for the maximum number of generations and completely replace the
population each time. For n¼ 10, when nc¼ 45, the combinations,
hence, amount to "3:5# 1013, and we are exploring less than
"4# 105 configurations.

In a real-life scenario, the probabilities pðtk;KQWÞ used to evaluate
the fitness score would be affected by noise. This needs to be accounted
for when evaluating the distance by setting a threshold value T below
which two probabilities are considered equal. The algorithm, thus, needs
to be modified to halt whether the distance between the measured and
evaluated probabilities is smaller than T, which counts as a success, or
when it reaches the maximum number of generations, in which case the
algorithm has failed. Depending on the value of T, there can be four out-
comes: (1) True negative: The algorithm fails to reach T, and the cou-
plings are not found. (2) False negative: The algorithm fails to reach T,
but the exact string of couplings has been found. This happens if T is set
too low compared to the noise affecting the probabilities. (3) True posi-
tive: the algorithm successfully finds a fitness below T, and that corre-
sponds to the exact couplings. (4) False positive: the algorithm
successfully finds a fitness below T, but the couplings are not correct.
This happens when the threshold is set too high compared to the noise,
and hence, the algorithm stops before it can converge. In order to test
this behavior, we simulate the measured probabilities for a network with
n¼ 5 for a star topology and a fully connected topology, using the same
hyperparameters as before aside from the max number of generations,
which we set to ng¼ 5. We know from the ideal case (Fig. 3) that for
these topologies the algorithm converges in more than five generations,
so we do expect to have some true negative outcomes. We simulate the
probability measurements with a total of Nr resources ranging from
Nr¼ 500 to 5000, and through a Monte Carlo (MC) routine, we add
Possionian noise to the simulated probabilities. For each MC run, we
average the successes/fails over N¼ 10 runs of the algorithm. We record
the results for threshold values ranging from T ¼ 4# 10&4 to T ¼ 0:2.

In Fig. 4, we report the results of the success/fail rates over 100 MC runs
for the star network (a) and (b) and complete network (c) and (d) with
Nr¼ 500 (a) and (c) and Nr¼ 5000 (b) and (d) as a function of the
threshold value (for other Nr see the supplementary material). As
expected, we can observe the four behaviors described earlier: when T is
too low, the outcomes are dominated by false negatives (light red), with
a small percentage of true negatives, due to the fact that the algorithm
would take more than five generations to converge. As the threshold
increases so do the number of true positives, while the true negatives
remain constant. For larger thresholds, both the true positive and true
negative drop. The algorithm always satisfies the threshold condition
before it can converge to the actual solution.

CONCLUSION
In conclusion, we have employed a genetic algorithm to retrieve

the topology of a network, having access solely to the initial state of a
probe undergoing a CTWQ and the measured probability distributions
at given times. We have explored the performance of the algorithm for
different network sizes and topologies, as well as when the measured
probabilities are affected by Poissonian noise. The algorithm maintains
high-performance levels for all the configurations explored, which
could be further optimized by fine-tuning the hyperparameters for a
specific network size. The genetic algorithm is particularly suited to
address large parameter spaces, however, increasing the network size
by order of magnitudes or removing the constraint on the coupling
strength (i.e., by considering non-uniform weights or complex cou-
plings) would make it challenging in terms of computational times
and resources. In order to achieve such scalability, a perspective is that
of extending these results to incorporate machine learning techni-
ques.47 By relying solely on measured probabilities, our technique pro-
vides a simple yet effective strategy for the routine characterization of
networks, and as such constitutes an enabling step toward most devel-
oping quantum technologies based on complex networks,48–53 as well

FIG. 3. Algorithm convergence. Average numbers of generations required for con-
vergence over N runs of the algorithm for a star (a), complete (b), and random (c)
network as described in the main text. The shaded region is the standard deviation
error over the N runs.

FIG. 4. Results with noise. Success/fail rates over the MC runs for the algorithm per-
formed on a star network (a) and (b) and a complete network (c) and (d) for
Nr¼ 500 resources (a) and (c) and Nr¼ 5000 resources (b) and (d). Light green:
true positives; dark green: false positives; light red: false negatives; and dark red:
true negatives.
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In all these tasks, fine tuning of the Hamiltonian parameters is
required in order to achieve reliable and satisfactory results.78–81 The
control of experimental CTQWs usually relies on a set of directly
accessible experimental parameters, which indirectly dictate the values
of the Hamiltonian ones. However, since the mapping between these
two sets of parameters can be particularly involved, in order to reliably
characterizing the Hamiltonian, a detailed calibration linking one set
to the other may not be sufficient. Hamiltonian learning strategies
must, hence, be developed, estimating the relevant Hamiltonian
parameters starting from experimental observables.

Here, we discuss how to successfully address the characterization
of the CTQW Hamiltonian as an estimation problem in a network
with a fixed topology. In particular, we explore how to infer the
Hamiltonian parameters of a CTQW unfolding on a line graph with
n-neighbor interactions, having access only to the probability distribu-
tion on the graph’s sites at a known time t and to the initial state of the
system. By casting the problem in informational terms, we determine
the most suitable measurement configuration and then perform the
estimation with a Deep Neural Network model. Our results show that
our model acts as a nearly optimal estimator, saturating the bounds
established by the estimation theory.

II. RESULTS
A. Multiparameter estimation of CTQW

CTQWs describe the evolution of a quantum particle that coher-
ently moves among a set of Ns discrete positions fjxigNs

x¼1, which con-
stitute a basis for the CTQW Hilbert space. The Hamiltonian
generating the quantum dynamics is expressed in terms of on-site
energies !x and couplings Jxy between sites x and y. Here, we focus on
a CTQW on a line with zero on-site energies !x ¼ 08x and n-neigh-
bor uniform couplings, such that the Hamiltonian can be written as

H ¼ "
Xn

i¼1

XNs"i

x

Jiðjx þ iihxjþ jxihx þ ijÞ: (1)

In this work, the couplings Ji are taken to be positive real num-
bers. This model could be generalized by considering complex cou-
plings, which lead to chiral QWs.82–86 Given the Hamiltonian (1) and
an initial state of the walker jw0i, the evolution of the CTQW at time t
is generated by the operator e"iHt , such that the probability of occupy-
ing site x is expressed as

pxðt; J1;…; JnÞ ¼ jhxje"iHt jw0ij
2: (2)

The squared norm operation in Eq. (2) establishes a non-linear map-
ping between its Hilbert space and the probability distributions in

position space; this non-linearity, together with a high sensitivity to
the initial condition, is linked to a chaotic behavior of QWs that can
be exploited to build secure cryptographic protocols.87–89

The main objective of this work is described in Fig. 1: our graph
is a chain with Ns sites, and the CTQW Hamiltonian is defined by n
parameters Ji, each varying in a known interval which we set as [0,1].
We assume to have control on the initial state jw0i and to have access
to the probability pxðt; J1;…; JnÞ measured at a given time t. We aim
at estimating the Hamiltonian parameters J1;…; Jn. As stated before,
this problem is highly non-linear, making a direct inversion a complex
task. When the Hamiltonian depends only on one parameter, i.e., only
uniform first neighbor couplings are considered, it is possible to
address the problem analytically.90,91 Since we are dealing with an
arbitrary large but finite number of parameters, we can cast this prob-
lem in terms of multiparameter estimation, and, given that our mea-
surement strategy is fixed, i.e., we are performing a position
measurement over all the sites of the chain, we can directly refer to the
classical Fisher Information (FI). In this scenario, the FI is a matrix of
dimension n& n whose elements are defined as

Fij ¼
X

x

@Ji pxðt; J1;…; JnÞ@Jj pxðt; J1;…; JnÞ
pxðt; J1;…; JnÞ

: (3)

By inverting the FI matrix, we can then cast the Carm!er–Rao
bound (CRB), lower bounding the variance of the estimated parame-
ters D2Ji as

M ' D2Ji ( ðF"1Þii; (4)

where M is the total resources employed for the measurement. This
will serve as a reference to quantify the performance of our estimation.
The CRB can always be saturated with an unbiased estimator.
Estimation protocols conventionally make use of the maximum likeli-
hood or Bayesian strategies in order to derive an unbiased estima-
tor.39,92 Machine Learning techniques have recently shown to provide
a suitable alternative, allowing to perform optimal estimation without
recurring to a detailed model of the problem at hand. Specifically,
Neural Networks (NNs) have been used both in single and multipa-
rameter estimations demonstrating to successfully perform optimal
estimation when trained with a sufficiently sampled dataset.22,25

Furthermore, NNs have proven higher robustness to noise compared
to the other techniques. This black-box approach is particularly helpful
in our scenario as, for most instances, pxðt; J1;…; JnÞ cannot be evalu-
ated analytically. This complicates the use of traditional estimators in
that the probabilities need to be sampled numerically. This issue is
usually circumvented by employing Markov chain Monte Carlo
methods93 to evaluate an estimator by sampling the numerical

FIG. 1. Conceptual scheme. Starting from a given initial state, a system undergoes a CTQW, and the position probabilities at a time t are recorded. These are then used as
input for a deep neural network, which outputs the values of the Hamiltonian parameters defining the CTQW.
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Cramér-Rao bound: lower bound on the variance of the estimated parameter Δ2[Jk]

MΔ2[Jk] ≥ (F−1)kk
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Comparison with the CRB

MΔ2[Jk] ≥ (F−1)kk

addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.
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detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
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variances.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 014405 (2023); doi: 10.1116/5.0137398 5, 014405-4

Published under an exclusive license by AIP Publishing

addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 014405 (2023); doi: 10.1116/5.0137398 5, 014405-4

Published under an exclusive license by AIP Publishing

addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 014405 (2023); doi: 10.1116/5.0137398 5, 014405-4

Published under an exclusive license by AIP Publishing

addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 5, 014405 (2023); doi: 10.1116/5.0137398 5, 014405-4

Published under an exclusive license by AIP Publishing



16/01/25                                                                           Claudia Benedetti                                                                       QSQW2025

model-free estimation, which is particularly beneficial for CTQW
since the probabilities are often not attainable analytically. However,
both from a conceptual and a resource-based point of view, this
approach is viable when the amount of parameters characterizing the
CTQW is limited: the parametric estimation protocol is not an effi-
cient way for considering a large number of parameters at once.
Supervised learning is also resource-demanding in this sense, as
increasing the number of parameters while keeping the estimation at
the CRB requires increasing significantly the size of the training set, as
it is necessary to sample each dimension in the parameter space suffi-
ciently. While it is difficult to provide quantitative scaling of the com-
putational resources that would be needed in a general CTQW, it can
be already seen from our example that going from a two to a three-
parameter estimation implied increasing the training set of roughly
one order of magnitude. Depending on the computational resources at

hand, this can be a strong limiting factor, although it can be mitigated
by adopting well-established techniques such as batch generators. This
may allow also to extend these results to multiple particles and explore
more complex topologies. Degenerations in the parameter space may
present when exploring more complex CTQW evolutions, but these
can be resolved by measuring the probabilities at two different times,
similarly to Ref. 25. While our approach does offer a certain flexibility,
for large and densely connected networks, a paradigm shift may be
required, and different characterization strategies may be investigated,
for instance, based on search algorithms or reinforcement learning.
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FIG. 4. Three-parameter estimation. Results of the estimation of the first, second, and third-neighbor couplings using the NN model for a fixed input state. Each 3D log-plot is a
map showing the CRB (surface) and estimated variance (fuchsia circles) for MD2J1 [panels (a)–(e)], MD2J2 [panels (f)–(j)], and MD2J3 [panels (k)–(o)] as a function of J1 and
J2 for different values of J3 ¼ 0; 0:25; 0:5; 0:75; and 1 for each column. Panels (p)–(r) show the CRB (blue line) and evaluated variances (red circles) for MD2J1 as a function
of J1 for J2 ¼ J3 ¼ 1 [panel (p)], MD2J2 as a function of J2 for J1 ¼ J3 ¼ 1 [panel (q)], and MD2J3 as a function of J3 for J1 ¼ J2 ¼ 1 [panel (r)].
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Conclusions & Final Comments

Further optimization by fine-tuning the hyperparameters for a specific network size: our results 
are but a lower bound to the achievable performance attainable. 

Estimation of on-site energies, or non-uniform couplings 

Our analysis involves a global measurement on the network. Localized/Partial measurements 
should be investigated. 

Generalize for estimation of  parameters & topology 

Important to make a connection between the probability distribution and topology

n

selected pair of individuals will produce two children. In order to
ensure genetic diversity, with a small probability pm, children can
undergo mutations consisting of bit flips. The newborn children
together with the cloned hall of fame individuals become the next gen-
eration, and the algorithm continues iteratively, stopping either when
the optimal individual is found (i.e., fitness score equals to zero) or
when a maximum number of generations ng is reached. A full depic-
tion of the algorithm and the implementation of the genetic operations
is reported in the supplementary material.

The initial state of the probe as well as the evolution times at
which the probabilities are measured play a fundamental role toward
the success of the algorithm: for instance, choosing a localized state
may result in the discarding part of the network, if composed of two or
more disjoints subnetworks; evolving the state for too short a time in a
large network may preclude the state to reach the whole network.
While we do not perform a full optimization of the initial state, we
choose one that allows us to explore a large variety of different topolo-
gies and network sizes. Also, all the hyperparameters defining the algo-
rithm (population size np, elitist population pe, individuals involved in
each tournament k, crossover probability pc, mutation probability pm,
and max number of generations ng) can be optimized in accordance
with the task at hand and specifically with the network size. In our
analysis, we vary the network size to explore how the algorithm scales
with an increasing number of couplings, but for the sake of simplicity,
we have chosen to keep all hyperparameters fixed aside from the popu-
lation size np. Our results, hence, are but a lower bound to the achiev-
able performance attainable by fine-tuning for a fixed network size.

Here, we report the results obtained with a star graph, a complete
graph, and a graph with an arbitrary topology. This last network is a
simplified version of the graph in Ref. 45, describing the relations
between the characters in the novel Les Mis!erables.46 The star graph is
a network where a central node is connected to all remaining vertices,
which have no connections among each other. The complete graph is
the graph with maximum connectivity, where all vertices are con-
nected to all the other ones. Results for additional topologies (line and

circle) and further details on the generation of the Les Mis!erables
graph can be found in the supplementary material.

In order to test the algorithm, we inspect networks with nodes
from n¼ 5 to 10, thus, we search for binary strings with length
nc¼ 10–45. We measure the probability distributions at two distinct
times, t1 ¼ 0:5 and t2 ¼ 0:6. As mentioned above, all hyperpara-
meters are kept fixed (see the supplementary material), aside from the
population size np, which we scale as np ¼ 2 " n2c . This ensures a trade-
off between computation time and performance and allows us to pro-
vide a controlled comparison for the performance at different sizes.
We fix the maximum number of generations to ng¼ 100, and, for each
configuration, we run the algorithm N¼ 100 times.

We first consider the ideal case in which the probability distribu-
tions are noiseless. The results are reported in Fig. 2, which shows the
coupling values (green¼ 1, fuchsia¼ 0) obtained for each run of N for
the star (a)–(f), complete (h)–(m), and Les Mis!erables graph (o)–(t), as
well as the success rate in each instance (g), (n), and (u). Figure 2 high-
lights how most of the time when the algorithm fails it returns the
same (wrong) couplings. This effect is due to the algorithm getting
stuck in the same local minima because, for the chosen evolution
times, there are multiple configurations leading to probabilities, which
are very close to the true one. The most affected network is the com-
plete, whose success rate, for n¼ 10, drops to 31%. However, it is suffi-
cient to run the algorithm including also a third probability measured
at time t3 ¼ 1, and a success rate of 73% is recovered (see the supple-
mentary material). In Fig. 3, we report the number of generations
needed for convergence as a function of n, which predictably increases
with the number of network sites, as does the search space. These
results also highlight how there is a greater dispersion in the number
of generations required for convergence as the network size increases
and in the instances in which local minima strongly affect the algo-
rithm. Our results show a remarkable efficiency of the search algo-
rithm employed: in fact, the number of possible combinations Ki

scales with 2nc , while we are inspecting, at most, 2 " n2c " ng combina-
tions, assuming the worst-case scenario in which we run the algorithm

FIG. 2. Results without noise. Retrieved couplings for N runs of the algorithm for star (a)–(f), complete (h)–(m), and random (o)–(t) networks for varying network sizes: (a), (h),
and (o) n¼ 5; (b), (i), and (p) n¼ 6; (c), (j), and (q) n¼ 7; (d), (k), and (r) n¼ 8; (e), (l), and (s) n¼ 9; (f), (m), and (t) n¼ 10. (g), (n), and (u) Success rates as a function of
network size. Green indicates a coupling equal to 1, and fuchsia indicates a coupling equal to 0.
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addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.
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Conclusions & Final Comments

Further optimization by fine-tuning the hyperparameters for a specific network size: our results 
are but a lower bound to the achievable performance attainable. 

Estimation of on-site energies, or non-uniform couplings 

Our analysis involves a global measurement on the network. Localized/Partial measurements 
should be investigated. 

Generalize for estimation of  parameters & topology 

Important to make a connection between the probability distribution and topology

n

selected pair of individuals will produce two children. In order to
ensure genetic diversity, with a small probability pm, children can
undergo mutations consisting of bit flips. The newborn children
together with the cloned hall of fame individuals become the next gen-
eration, and the algorithm continues iteratively, stopping either when
the optimal individual is found (i.e., fitness score equals to zero) or
when a maximum number of generations ng is reached. A full depic-
tion of the algorithm and the implementation of the genetic operations
is reported in the supplementary material.

The initial state of the probe as well as the evolution times at
which the probabilities are measured play a fundamental role toward
the success of the algorithm: for instance, choosing a localized state
may result in the discarding part of the network, if composed of two or
more disjoints subnetworks; evolving the state for too short a time in a
large network may preclude the state to reach the whole network.
While we do not perform a full optimization of the initial state, we
choose one that allows us to explore a large variety of different topolo-
gies and network sizes. Also, all the hyperparameters defining the algo-
rithm (population size np, elitist population pe, individuals involved in
each tournament k, crossover probability pc, mutation probability pm,
and max number of generations ng) can be optimized in accordance
with the task at hand and specifically with the network size. In our
analysis, we vary the network size to explore how the algorithm scales
with an increasing number of couplings, but for the sake of simplicity,
we have chosen to keep all hyperparameters fixed aside from the popu-
lation size np. Our results, hence, are but a lower bound to the achiev-
able performance attainable by fine-tuning for a fixed network size.

Here, we report the results obtained with a star graph, a complete
graph, and a graph with an arbitrary topology. This last network is a
simplified version of the graph in Ref. 45, describing the relations
between the characters in the novel Les Mis!erables.46 The star graph is
a network where a central node is connected to all remaining vertices,
which have no connections among each other. The complete graph is
the graph with maximum connectivity, where all vertices are con-
nected to all the other ones. Results for additional topologies (line and

circle) and further details on the generation of the Les Mis!erables
graph can be found in the supplementary material.

In order to test the algorithm, we inspect networks with nodes
from n¼ 5 to 10, thus, we search for binary strings with length
nc¼ 10–45. We measure the probability distributions at two distinct
times, t1 ¼ 0:5 and t2 ¼ 0:6. As mentioned above, all hyperpara-
meters are kept fixed (see the supplementary material), aside from the
population size np, which we scale as np ¼ 2 " n2c . This ensures a trade-
off between computation time and performance and allows us to pro-
vide a controlled comparison for the performance at different sizes.
We fix the maximum number of generations to ng¼ 100, and, for each
configuration, we run the algorithm N¼ 100 times.

We first consider the ideal case in which the probability distribu-
tions are noiseless. The results are reported in Fig. 2, which shows the
coupling values (green¼ 1, fuchsia¼ 0) obtained for each run of N for
the star (a)–(f), complete (h)–(m), and Les Mis!erables graph (o)–(t), as
well as the success rate in each instance (g), (n), and (u). Figure 2 high-
lights how most of the time when the algorithm fails it returns the
same (wrong) couplings. This effect is due to the algorithm getting
stuck in the same local minima because, for the chosen evolution
times, there are multiple configurations leading to probabilities, which
are very close to the true one. The most affected network is the com-
plete, whose success rate, for n¼ 10, drops to 31%. However, it is suffi-
cient to run the algorithm including also a third probability measured
at time t3 ¼ 1, and a success rate of 73% is recovered (see the supple-
mentary material). In Fig. 3, we report the number of generations
needed for convergence as a function of n, which predictably increases
with the number of network sites, as does the search space. These
results also highlight how there is a greater dispersion in the number
of generations required for convergence as the network size increases
and in the instances in which local minima strongly affect the algo-
rithm. Our results show a remarkable efficiency of the search algo-
rithm employed: in fact, the number of possible combinations Ki

scales with 2nc , while we are inspecting, at most, 2 " n2c " ng combina-
tions, assuming the worst-case scenario in which we run the algorithm

FIG. 2. Results without noise. Retrieved couplings for N runs of the algorithm for star (a)–(f), complete (h)–(m), and random (o)–(t) networks for varying network sizes: (a), (h),
and (o) n¼ 5; (b), (i), and (p) n¼ 6; (c), (j), and (q) n¼ 7; (d), (k), and (r) n¼ 8; (e), (l), and (s) n¼ 9; (f), (m), and (t) n¼ 10. (g), (n), and (u) Success rates as a function of
network size. Green indicates a coupling equal to 1, and fuchsia indicates a coupling equal to 0.
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addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.
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Conclusions & Final Comments

Further optimization by fine-tuning the hyperparameters for a specific network size: our results 
are but a lower bound to the achievable performance attainable. 

Estimation of on-site energies, or non-uniform couplings 

Our analysis involves a global measurement on the network. Localized/Partial measurements 
should be investigated. 

Generalize for estimation of  parameters & topology 

Important to make a connection between the quantum state/distribution and topology

n

selected pair of individuals will produce two children. In order to
ensure genetic diversity, with a small probability pm, children can
undergo mutations consisting of bit flips. The newborn children
together with the cloned hall of fame individuals become the next gen-
eration, and the algorithm continues iteratively, stopping either when
the optimal individual is found (i.e., fitness score equals to zero) or
when a maximum number of generations ng is reached. A full depic-
tion of the algorithm and the implementation of the genetic operations
is reported in the supplementary material.

The initial state of the probe as well as the evolution times at
which the probabilities are measured play a fundamental role toward
the success of the algorithm: for instance, choosing a localized state
may result in the discarding part of the network, if composed of two or
more disjoints subnetworks; evolving the state for too short a time in a
large network may preclude the state to reach the whole network.
While we do not perform a full optimization of the initial state, we
choose one that allows us to explore a large variety of different topolo-
gies and network sizes. Also, all the hyperparameters defining the algo-
rithm (population size np, elitist population pe, individuals involved in
each tournament k, crossover probability pc, mutation probability pm,
and max number of generations ng) can be optimized in accordance
with the task at hand and specifically with the network size. In our
analysis, we vary the network size to explore how the algorithm scales
with an increasing number of couplings, but for the sake of simplicity,
we have chosen to keep all hyperparameters fixed aside from the popu-
lation size np. Our results, hence, are but a lower bound to the achiev-
able performance attainable by fine-tuning for a fixed network size.

Here, we report the results obtained with a star graph, a complete
graph, and a graph with an arbitrary topology. This last network is a
simplified version of the graph in Ref. 45, describing the relations
between the characters in the novel Les Mis!erables.46 The star graph is
a network where a central node is connected to all remaining vertices,
which have no connections among each other. The complete graph is
the graph with maximum connectivity, where all vertices are con-
nected to all the other ones. Results for additional topologies (line and

circle) and further details on the generation of the Les Mis!erables
graph can be found in the supplementary material.

In order to test the algorithm, we inspect networks with nodes
from n¼ 5 to 10, thus, we search for binary strings with length
nc¼ 10–45. We measure the probability distributions at two distinct
times, t1 ¼ 0:5 and t2 ¼ 0:6. As mentioned above, all hyperpara-
meters are kept fixed (see the supplementary material), aside from the
population size np, which we scale as np ¼ 2 " n2c . This ensures a trade-
off between computation time and performance and allows us to pro-
vide a controlled comparison for the performance at different sizes.
We fix the maximum number of generations to ng¼ 100, and, for each
configuration, we run the algorithm N¼ 100 times.

We first consider the ideal case in which the probability distribu-
tions are noiseless. The results are reported in Fig. 2, which shows the
coupling values (green¼ 1, fuchsia¼ 0) obtained for each run of N for
the star (a)–(f), complete (h)–(m), and Les Mis!erables graph (o)–(t), as
well as the success rate in each instance (g), (n), and (u). Figure 2 high-
lights how most of the time when the algorithm fails it returns the
same (wrong) couplings. This effect is due to the algorithm getting
stuck in the same local minima because, for the chosen evolution
times, there are multiple configurations leading to probabilities, which
are very close to the true one. The most affected network is the com-
plete, whose success rate, for n¼ 10, drops to 31%. However, it is suffi-
cient to run the algorithm including also a third probability measured
at time t3 ¼ 1, and a success rate of 73% is recovered (see the supple-
mentary material). In Fig. 3, we report the number of generations
needed for convergence as a function of n, which predictably increases
with the number of network sites, as does the search space. These
results also highlight how there is a greater dispersion in the number
of generations required for convergence as the network size increases
and in the instances in which local minima strongly affect the algo-
rithm. Our results show a remarkable efficiency of the search algo-
rithm employed: in fact, the number of possible combinations Ki

scales with 2nc , while we are inspecting, at most, 2 " n2c " ng combina-
tions, assuming the worst-case scenario in which we run the algorithm

FIG. 2. Results without noise. Retrieved couplings for N runs of the algorithm for star (a)–(f), complete (h)–(m), and random (o)–(t) networks for varying network sizes: (a), (h),
and (o) n¼ 5; (b), (i), and (p) n¼ 6; (c), (j), and (q) n¼ 7; (d), (k), and (r) n¼ 8; (e), (l), and (s) n¼ 9; (f), (m), and (t) n¼ 10. (g), (n), and (u) Success rates as a function of
network size. Green indicates a coupling equal to 1, and fuchsia indicates a coupling equal to 0.
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addressing only the sites that have undergone the evolution.90 We
note that for longer chain lengths, the information on the second
neighbor is consistently higher than that on the first neighbor. This is
not surprising, because at any given time, the second neighbor infor-
mation will have spanned a higher portion of the chain, and, thus, the
information would travel faster compared to that of the first neighbor,
hence mitigating the decrease in information previously discussed.
Finally, we note that increasing the evolution time corresponds to
increasing the amount of information, at the cost of the information
becoming heavily structured. This reflects the shape of the probability
space, shown in Fig. 2 panel (d) and (e), at t¼ 2 and t¼ 20 for Ns¼ 5.

B. Two-parameter estimation
We now proceed with the estimation, while keeping n¼ 2. Based

on the results of Fig. 2, we now seek for a combination of chain length

and evolution time, where the information on the sought parameters
is sufficiently high but not overly structured. Indeed, while it is desir-
able to have a high information content, a heavily structured profile
would be detrimental to the estimation, requiring a tighter sampling of
the NN’s training dataset. We, hence, fix our chain length to Ns ¼ 10
sites and set the evolution time at t¼ 1.5.

In order to perform the estimation, we implement a deep neural
network model as follows: the input features are the probabilities of
detection at each site x of the chain pxðt; J1; J2Þ; hence, the input layer
is comprised of Ns ¼ 10 neurons. We then normalize the input
features using a Batch Normalization layer, which is followed by six
hidden layers of 600 neurons each. The network outputs the value of
the two couplings; hence, the output layer will consist of two neurons.

We consider three different initial states jw0i: a Gaussian with
r ¼ 0:2 centered on site x¼ 5 corresponding to a localized excitation,

FIG. 3. Two-parameter estimation. Results of the estimation of the first and second neighbor couplings performed using the NN model with three different input states, shown in
the inset (columns). Panels (a)–(c) show the log-plots of CRB for J1 (surface) and the variance of the NN prediction evaluated over the Monte Carlo samples multiplied by the
total number of resources M (red circles—see text). Panels (d)–(f) show the log-plots of CRB (surface) and evaluated variance (red circles) for J2. Panels (g)–(i) show a slice
of the 3D plot of MD2J1 for J2 ¼ 1, while panels (j)–(l) show a slice of the 3D plot of MD2J2 for J1 ¼ 1. In these, the blue line is the CRB, and the red dots are the estimated
variances.
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The genetic algorithm: pseudocode

2

initial state using the couplings in ⇤i and measuring the
distance between the generated and measured probabil-
ities concatenated at di↵erent times tk, i.e. ⇡x({tk},⇤i)
and ⇡x({tk},⇤QW) respectively. The distance is measured
with the Kullback-Leibler divergence (KLD), defined as:

KLD(⇤i) =
X

x

⇡x({tk},⇤i) log

✓
⇡x({tk},⇤i)

⇡x ({tk},⇤QW)

◆
. (1)

We note we have also tried metrics such as the Kol-
mogorov distance, obtaining analogous results.
Torunament selection. We select the individuals for
reproduction among the whole population running re-
peated tournaments between k individuals at a time. We
need to select np(1� pe) individuals so that, since every
couple will produce two children with probability pc, the
size of the population remains unchanged at each itera-
tion. During each tournament, k individuals at random
are selected among the whole population. The fittest one
among the k (i.e. that with the smallest KLD) is chosen
as a parent.
Crossover. Children are created two at a time. Both
are initialized with the chromosome of one of their par-
ents each. With a probability pc, their chromosomes are
crossed over. If the crossover happens, a random inte-
ger number smaller than nc is selected, and serves as the
splitting point for the chromosome of the two parents:
one child’s chromosome will be comprised of the chromo-
some of the first parent up to the splitting point, and of
the second parent thereafter - and viceversa for the other
child.
Mutation For each child, each gene can undergo a muta-
tion with a probability pm. This is achieved by selecting
a random number between 0 and 1. If the number is
smaller than pm, then the gene will be flipped.

The pseudocode for each function is reported in Algo-
rithm 2.

III. LES MISÉRABLES GRAPH

In order to test the algorithm on a graph with a ran-
dom topology we adopt a simplified version of the graph
describing the connections between the characters in the
novel Les Misérables by V. Hugo. We use only the main
characters, and we fix all the coupling strengths to 1.
We start from n = 5 characters, and then increase n
by introducing new characters. The resulting graphs are
reported in Fig. S1

IV. RESULTS FOR ADDITIONAL
TOPOLOGIES

In Fig. S2 we report the results obtained without noise
for the line and circle topologies. Panels (a-f) and (h-m)
show the couplings for the N=100 runs of the algorithm,
while panels (g,n) show the success rate. In Fig. S3 we
report the generations needed for convergence.

Algorithm 2 Genetic functions

1: function Fitness(⇤i,⇡(tk,⇤
QW)):

2: Evaluate ⇡(tk,⇤i)
3: Evaluate KLD(⇡(tk,⇤i),⇡(tk,⇤

QW))
4: return KLD
5: end function

6: function Tournament(Pgen, S):
7: id random integer in [0, np]
8: for j = 0! k � 2 do
9: aux random integer in [0, np)

10: if S[aux] < S[id] then
11: id aux
12: end if
13: end for
14: return ⇤[id]
15: end function

16: function Crossover(⇤1,⇤2):
17: Generate a random integer x in [0, 1]
18: if x < pc then
19: y  random integer in [0, nc)
20: child1  concatenate(⇤1[0 : y],⇤2[y + 1 : nc � 1])
21: child2  concatenate(⇤2[0 : y],⇤1[y + 1 : nc � 1])
22: end if
23: return child1,child2

24: end function

25: function Mutation(childi):
26: for j = 0! nc � 1 do
27: Generate random x in [0,1]
28: if x < pm then
29: childi[j] 1�childi[j]
30: end if
31: end for
32: return childi

33: end function

V. COMPLETE NETWORK WITH N=10

As shown in the main text, the complete network for
n=10 is the most a↵ected by local minima, which pre-
vent the algorithm to converge to the correct solution
dropping the success rate to 31%. This is because at the
chosen times, there are configurations leading to similar
probabilities than the complete one. However, it is su�-
cient to repeat the algorithm adding a third probability
measured at t3 = 1, to drastically increase the success
rate up to 73%. The retrieved couplings are reported in
Fig. S4.

VI. RESULTS WITH NOISE FOR ADDITIONAL
RESOURCES

We report additional results with noise for Nr = 1000,
and Nr = 2500 for the star and the complete networks
with n=5. The success/fail rates are shown in Fig. S5

Supplementary Information: Identifying network topologies via quantum walk
distributions

Claudia Benedetti1 and Ilaria Gianani2

1Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, 20133, Milan, Italy
2Dipartimento di Scienze, Università degli Studi Roma Tre,
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I. GENETIC ALGORITHM

The algorithm begins with an initial population initial-
ized by generating np random binary arrays ⇤i of size nc,
containing the couplings Jxy, which in this representa-
tion correspond to the genes of each individual. These np

chromosomes correspond to the zeroth generation. While
the number of generations is lower than ng, we proceed as
follows: We evaluate the score Si of each string ⇤i using
the Fitness function described in details in the next sec-
tion. The best fitness score, corresponding to the lowest
value, and the relative couplings are stored. If the score
is equal to zero, the optimal solution has been found,
the algorithm stops and returns it. If the condition is
not met, the algorithm continues by selecting the fittest
pe ·np chromosomes ⇤i and place them in a hall of fame,
to be cloned in the following generation. Since the pop-
ulation size has to stay constant, we need to create the
remaining np(1� pe) individuals which will populate the
next generation together with those cloned from the hall
of fame. In order to do so we select the best parents from
the whole population (including the hall of fame). This is
achieved with the Tournament selection function, which
randomly selects k individuals at a time and returns the
best among them (lowest fitness score). The random se-
lection of the k competitors ensures that the chosen indi-
viduals are not necessarily the best in the population. In
this way, genetic diversity is ensured to mitigate the pres-
ence of local minima. Once the parents are selected, they
are mixed through the Crossover function, which returns
two children which, with probability pc, are composed by
a mixture of the parents chromosomes. To further ensure
genetic diversity, the genes of the children can undergo
mutations with mutation probability pm. When a muta-
tion happens, the gene is flipped. The generated children
together with the hall of fame constitute the new gener-
ation. The algorithm repeats until either a chromosome
with fitness score equal to zero is found, or the maximum
number of generations is reached. The pseudocode of the
algorithm reported in Algorithm 1.

The values of the hyperparameters are reported in Ta-
ble S1:

⇤ ilaria.gianani@uniroma3.it

Algorithm 1 Genetic Algorithm
1: gen 0
2: Randomly generate np binary arrays {⇤i}
3: Pgen  {⇤i} . Initialize population
4: while gen < ng do
5: for i = 0! np � 1 do
6: Si= Fitness(⇤i,⇡ ({tk},⇤QW)) . Evaluate scores
7: end for
8: best (Min(S),⇤Min(S))
9: if best[0] = 0 then

10: return best
11: end if
12: for i = 0! penp � 1 do
13: HOFi  (⇤i, Si) sorted by scores . Hall of fame
14: end for
15: Insert HOF into Pgen+1

16: for j = 0! np(1� pe)/2� 1 do
17: ⇤j

1,⇤
j
2  Tournament(Pgen, S) . Select parents

18: Add Crossover(⇤j
1,⇤

j
2) to children . Children

19: end for
20: for i = 0! np(1� pe)� 1 do
21: Apply Mutation(childreni) . Mutation
22: end for
23: Insert children in Pgen+1

24: gen gen+ 1
25: end while

Parameter Value

ng Maximum number of generations 100

np Population size 2 · n2
c

pe Elitist probability 0.02

k Tournament competitors 6

pc Crossover probability 0.85

pm Mutation probability 0.05

TABLE S1. Genetic algorithm parameters

II. GENETIC OPERATIONS

We define the genetic functions which are used in the
algorithm:
Fitness evaluation. The algorithm evaluates the fitness
of each individual in the population ⇤i by evolving the


